

Copyright © 2005 EPCglobal Inc™, All Rights Reserved. Page 1 of 71

 1

The Application Level Events (ALE) Specification, 2

Version 1.0 3

 4

 5

 6

 7

EPCglobal Ratified Specification 8
Version of September 15, 2005 9

 10

Copyright © 2005, 2004 EPCglobal Inc™, All Rights Reserved. Page 2 of 71

Abstract 12

This document specifies an interface through which clients may obtain filtered, 13
consolidated Electronic Product Code™ (EPC) data from a variety of sources. The 14
design of this interface recognizes that in most EPC processing systems, there is a level 15
of processing that reduces the volume of data that comes directly from EPC data sources 16
such as RFID readers into coarser “events” of interest to applications. It also recognizes 17
that decoupling these applications from the physical layers of infrastructure offers cost 18
and flexibility advantages to technology providers and end-users alike. 19

The processing done at this layer typically involves: (1) receiving EPCs from one or more 20
data sources such as readers; (2) accumulating data over intervals of time, filtering to 21
eliminate duplicate EPCs and EPCs that are not of interest, and counting and grouping 22
EPCs to reduce the volume of data; and (3) reporting in various forms. The interface 23
described herein, and the functionality it implies, is called “Application Level Events,” or 24
ALE. 25

The role of the ALE interface within the EPCglobal Network™ Architecture is to provide 26
independence between the infrastructure components that acquire the raw EPC data, the 27
architectural component(s) that filter & count that data, and the applications that use the 28
data. This allows changes in one without requiring changes in the other, offering 29
significant benefits to both the technology provider and the end-user. The ALE interface 30
described in the present specification achieves this independence through three means: 31

• It provides a means for clients to specify, in a high-level, declarative way, what EPC 32
data they are interested in, without dictating an implementation. The interface is 33
designed to give implementations the widest possible latitude in selecting strategies 34
for carrying out client requests; such strategies may be influenced by performance 35
goals, the native abilities of readers which may carry out certain filtering or counting 36
operations at the level of firmware or RF protocol, and so forth. 37

• It provides a standardized format for reporting accumulated, filtered EPC data that is 38
largely independent of where the EPC data originated or how it was processed. 39

• It abstracts the sources of EPC data into a higher-level notion of “logical reader,” 40
often synonymous with “location,” hiding from clients the details of exactly what 41
physical devices were used to gather EPC data relevant to a particular logical 42
location. This allows changes to occur at the physical layer (for example, replacing a 43
2-port multi-antenna reader at a loading dock door with three “smart antenna” 44
readers) without affecting client applications. Similarly, it abstracts away the fine-45
grained details of how data is gathered (e.g., how many individual tag read attempts 46
were carried out). These features of abstraction are a consequence of the way the data 47
specification and reporting aspects of the interface are designed. 48

The specification includes a formal processing model, an application programming 49
interface (API) described abstractly via UML, and bindings of the API to a WS-i 50
compliant SOAP protocol with associated bindings of the key data types to XML schema. 51

http://www.epcglobalinc.org

Copyright © 2005, 2004 EPCglobal Inc™, All Rights Reserved. Page 3 of 71

Implementors may provide other bindings, as well as extensions, as provided by the 52
framework of the specification. 53

Audience for this document 54

The target audience for this specification includes: 55

• EPC Middleware vendors 56

• Reader vendors 57

• Application developers 58

• System integrators 59

Status of this document 60

This section describes the status of this document at the time of its publication. Other 61
documents may supersede this document. The latest status of this document series is 62
maintained at EPCglobal. See www.epcglobalinc.org for more information. 63

This version of the specification was ratified by the EPCglobal Board of Governors on 64
September 23, 2005. It was reviewed and approved by the EPCglobal Business Steering 65
Committee on 14 February 2005 and by the Technical Steering Committee on 2 February 66
2005. 67

Comments on this document should be sent to the EPCglobal Software Action Group 68
Filtering and Collection Working Group mailing list 69
sag_fc@epclinklist.epcglobalinc.org. 70

Table of Contents 71

1 Introduction .. 6 72

2 Role Within the EPCglobal Network Architecture .. 7 73

3 Terminology and Typographical Conventions... 9 74

4 ALE Formal Model .. 9 75

5 Group Reports .. 13 76

6 Read Cycle Timing... 13 77

7 Logical Reader Names ... 14 78

8 ALE API... 16 79

8.1 ALE – Main API Class.. 18 80

8.1.1 Error Conditions.. 20 81

8.2 ECSpec .. 22 82

http://www.epcglobalinc.org
sag_fc@epclinklist.epcglobalinc.org

Copyright © 2005, 2004 EPCglobal Inc™, All Rights Reserved. Page 4 of 71

8.2.1 ECBoundarySpec.. 23 83

8.2.2 ECTime... 25 84

8.2.3 ECTimeUnit.. 25 85

8.2.4 ECTrigger ... 25 86

8.2.5 ECReportSpec... 25 87

8.2.6 ECReportSetSpec.. 27 88

8.2.7 ECFilterSpec ... 27 89

8.2.8 EPC Patterns (non-normative) .. 27 90

8.2.9 ECGroupSpec ... 28 91

8.2.10 ECReportOutputSpec .. 31 92

8.2.11 Validation of ECSpecs... 32 93

8.3 ECReports.. 33 94

8.3.1 ECTerminationCondition.. 34 95

8.3.2 ECReport... 34 96

8.3.3 ECReportGroup .. 35 97

8.3.4 ECReportGroupList .. 35 98

8.3.5 ECReportGroupListMember... 36 99

8.3.6 ECReportGroupCount... 37 100

9 Standard Notification URIs.. 37 101

9.1 HTTP Notification URI ... 37 102

9.2 TCP Notification URI.. 38 103

9.3 FILE Notification URI... 38 104

10 XML Schema for Event Cycle Specs and Reports ... 39 105

10.1 Extensibility Mechanism.. 39 106

10.2 Schema ... 42 107

10.3 ECSpec – Example (non-normative).. 49 108

10.4 ECReports – Example (non-normative)... 49 109

11 SOAP Binding for ALE API... 50 110

11.1 SOAP Binding.. 50 111

12 Use Cases (non-normative)... 61 112

13 ALE Scenarios (non-normative) ... 63 113

13.1 ALE Context .. 63 114

http://www.epcglobalinc.org

Copyright © 2005, 2004 EPCglobal Inc™, All Rights Reserved. Page 5 of 71

13.2 Scenarios .. 64 115

13.2.1 Scenario 1a: Direct Subscription ... 65 116

13.2.1.1 Assumptions... 65 117

13.2.1.2 Description... 66 118

13.2.2 Scenario 1b: Indirect Subscription .. 66 119

13.2.2.1 Assumptions... 67 120

13.2.2.2 Description... 67 121

13.2.3 Scenario 2, 3: Poll, Immediate... 68 122

13.2.3.1 Assumptions... 68 123

13.2.3.2 Description... 69 124

14 Glossary (non-normative) ... 69 125

15 References... 70 126

 127

 128

http://www.epcglobalinc.org

Copyright © 2005, 2004 EPCglobal Inc™, All Rights Reserved. Page 6 of 71

1 Introduction 129
This document specifies an interface through which clients may obtain filtered, 130
consolidated EPC data from a variety of sources. The design of this interface recognizes 131
that in most EPC processing systems, there is a level of processing that reduces the 132
volume of data that comes directly from EPC data sources such as RFID readers into 133
coarser “events” of interest to applications. It also recognizes that decoupling these 134
applications from the physical layers of infrastructure offers cost and flexibility 135
advantages to technology providers and end-users alike. 136

The processing done at this layer typically involves: (1) receiving EPCs from one or more 137
data sources such as readers; (2) accumulating data over intervals of time, filtering to 138
eliminate duplicate EPCs and EPCs that are not of interest, and counting and grouping 139
EPCs to reduce the volume of data; and (3) reporting in various forms. The interface 140
described herein, and the functionality it implies, is called “Application Level Events,” or 141
ALE. 142

In early versions of the EPCglobal Network Architecture, originating at the Auto-ID 143
Center at the Massachussetts Institute of Technology (MIT), these functions were 144
understood to be part of a specific component termed “Savant.” The term “Savant” has 145
been variously used to refer generically to any software situated between RFID readers 146
and enterprise applications, or more specifically to a particular design for such software 147
as described by an MIT Auto-ID Center document “The Savant Specification Version 148
0.1” [Savant0.1] or to a later effort by the Auto-ID Center Software Action Group 149
[Savant1.0] that outlined a generalized container framework for such software. Owing to 150
the confusion surrounding the term, the word “Savant” has been deprecated by 151
EPCglobal in favor of more definite specifications of particular functionality. The 152
interface described herein is the first such definite specification. 153

The role of the ALE interface within the EPCglobal Network Architecture is to provide 154
independence between the infrastructure components that acquire the raw EPC data, the 155
architectural component(s) that filter & count that data, and the applications that use the 156
data. This allows changes in one without requiring changes in the other, offering 157
significant benefits to both the technology provider and the end-user. The ALE interface 158
described in the present specification achieves this independence through three means: 159

• It provides a means for clients to specify, in a high-level, declarative way, what EPC 160
data they are interested in, without dictating an implementation. The interface is 161
designed to give implementations the widest possible latitude in selecting strategies 162
for carrying out client requests; such strategies may be influenced by performance 163
goals, the native abilities of readers which may carry out certain filtering or counting 164
operations at the level of firmware or RF protocol, and so forth. 165

• It provides a standardized format for reporting accumulated, filtered EPC data that is 166
largely independent of where the EPC data originated or how it was processed. 167

• It abstracts the sources of EPC data into a higher-level notion of “logical reader,” 168
often synonymous with “location,” hiding from clients the details of exactly what 169
physical devices were used to gather EPC data relevant to a particular logical 170

http://www.epcglobalinc.org

Copyright © 2005, 2004 EPCglobal Inc™, All Rights Reserved. Page 7 of 71

location. This allows changes to occur at the physical layer (for example, replacing a 171
2-port multi-antenna reader at a loading dock door with three “smart antenna” 172
readers) without affecting client applications. Similarly, it abstracts away the fine-173
grained details of how data is gathered (e.g., how many individual tag read attempts 174
were carried out). These features of abstraction are a consequence of the way the data 175
specification and reporting aspects of the interface are designed. 176

Unlike the earlier MIT “Savant Version 0.1” effort, the present specification does not 177
specify a particular implementation strategy, or internal interfaces within a specific body 178
of software. Instead, this specification focuses exclusively on one external interface, 179
admitting a wide variety of possible implementations so long as they fulfill the contract 180
of the interface. For example, it is possible to envision an implementation of this 181
interface as an independent piece of software that speaks to RFID readers using their 182
network wireline protocols. It is equally possible, however, to envision another 183
implementation in which the software implementing the interface is part of the reader 184
device itself. 185

2 Role Within the EPCglobal Network Architecture 186
EPC technology, especially when implemented using RFID, generates a very large 187
number of object reads throughout the supply chain and eventually into consumer usage. 188
Many of those reads represent non-actionable “noise.” To balance the cost and 189
performance of this with the need for clear accountability and interoperability of the 190
various parts, the design of the EPCglobal Network Architecture seeks to: 191

1. Drive as much filtering and counting of reads as low in the architecture as possible 192
(i.e., in first preference to readers, then to “middleware”, and as a last resort to 193
“applications”), while meeting application and cost needs; 194

2. At the same time, minimize the amount of “business logic” embedded in the Tags, 195
Readers and middleware, where business logic is either data or processing logic that 196
is particular to an individual product, product category, industry or business process. 197

The Application Level Events (ALE) interface specified herein is intended to facilitate 198
these objectives by providing a flexible interface to a standard set of accumulation, 199
filtering, and counting operations that produce “reports” in response to client “requests.” 200
The client will be responsible for interpreting and acting on the meaning of the report 201
(i.e., the “business logic”). The client of the ALE interface may be a traditional 202
“enterprise application,” or it may be new software designed expressly to carry out an 203
EPC-enabled business process but which operates at a higher level than the “middleware” 204
that implements the ALE interface. Hence, the term “Application Level Events” should 205
not be misconstrued to mean that the client of the ALE interface is necessarily a 206
traditional “enterprise application.” 207

The ALE interface revolves around client requests and the corresponding reports that are 208
produced. Requests can either be: (1) immediate, in which information is reported on a 209
one-time basis at the time of the request; or (2) recurring, in which information is 210
reported repeatedly whenever an event is detected or at a specified time interval. The 211

http://www.epcglobalinc.org

Copyright © 2005, 2004 EPCglobal Inc™, All Rights Reserved. Page 8 of 71

results reported in response to a request can be directed back to the requesting client or to 212
a “third party” specified by the requestor. 213

This reporting API can be viewed as the interface to a 214
layer of functionality that sits between raw EPC 215
detection events (RFID tag reads or otherwise) and 216
application business logic. We refer to this layer as 217
the Application Level Event (ALE) layer. Note that 218
this document does not specify where ALE-level 219
processing takes place: it could take place within 220
independent software “middleware,” within a suitably 221
capable reader, or some combination, though always 222
with the ALE interface serving as a point of interface 223
to the client. Even when implemented as software 224
middleware, the filtering, counting, and other 225
processing requested by a client may be carried out within the software, or pushed into 226
the readers or other devices. This aspect of the ALE specification is intended explicitly 227
to give freedom to implementers, and to provide a way to take full advantage of a range 228
of reader capabilities (while at the same time avoiding clients from needing to understand 229
the details of those capabilities). 230

In many cases, the client of ALE will be software that incorporates the EPC Information 231
Service (EPCIS), or other business processing software. Since EPCIS is another 232
component of the EPCglobal Network Architecture that deals with higher-level EPC 233
events, it is helpful to understand how ALE differs from EPCIS and other software at 234
higher levels of the architecture. The principal differences are: 235

• The ALE interface is exclusively oriented towards real-time processing of EPC data, 236
with no persistent storage of EPC data required by the interface (though 237
implementations may employ persistent storage to provide resilience to failures). 238
Business applications, in contrast, typically deal explicitly with historical data and 239
hence are inherently persistent in nature. 240

• The events communicated through the ALE interface are pure statements of “what, 241
where, and when,” with no business semantics expressed. Business applications, and 242
typically EPCIS-level data, does embed business semantics at some level. For 243
example, at the ALE level, there might be an event that says “at location L, in the 244
time interval T1–T2, the following 100 case-level EPCs and one pallet-level EPC 245
were read.” Within a business application, the corresponding statement might be “at 246
location L, at time T2, it was confirmed that the following 100 cases were aggregated 247
onto the following pallet.” The business-level event, while containing essentially the 248
same EPC data as the ALE event, is at a semantically higher level because it 249
incorporates an understanding of the business process in which the EPC data were 250
obtained. 251

The distinction between the ALE and EPCIS/business layers is useful because it separates 252
concerns. The ALE layer is concerned with dealing with the mechanics of data 253
gathering, and of filtering down to meaningful events that are a suitable starting point for 254
interpretation by business logic. Business layers are concerned with business process, 255

Application
Business Logic

Application Level
Event (ALE) Layer

Raw Tag Read
Layer

http://www.epcglobalinc.org

Copyright © 2005, 2004 EPCglobal Inc™, All Rights Reserved. Page 9 of 71

and recording events that can serve as the basis for a wide variety of enterprise-level 256
information processing tasks. Within this general framework, there is room for many 257
different approaches to designing systems to meet particular business goals, and it is 258
expected that there will not necessarily be one “right” way to construct systems. Thus, 259
the focus in this specification is not on a particular system architecture, but on creating a 260
very well defined interface that will be useful within a variety of designs. 261

 A reference to the EPCglobal Network Architecture document should be inserted 262
when EPCglobal publishes such a document. 263

3 Terminology and Typographical Conventions 264
Within this specification, the terms SHALL, SHALL NOT, SHOULD, SHOULD NOT, 265
MAY, NEED NOT, CAN, and CANNOT are to be interpreted as specified in Annex G of 266
the ISO/IEC Directives, Part 2, 2001, 4th edition [ISODir2]. When used in this way, 267
these terms will always be shown in ALL CAPS; when these words appear in ordinary 268
typeface they are intended to have their ordinary English meaning. 269

All sections of this document, with the exception of Section 1 and Section 2, are 270
normative, except where explicitly noted as non-normative. 271

The following typographical conventions are used throughout the document: 272

• ALL CAPS type is used for the special terms from [ISODir2] enumerated above. 273

• Monospace type is used to denote programming language, UML, and XML 274
identifiers, as well as for the text of XML documents. 275

 Placeholders for changes that need to be made to this document prior to its reaching 276
the final stage of approved EPCglobal specification are prefixed by a rightward-277
facing arrowhead, as this paragraph is. 278

4 ALE Formal Model 279
Within this specification, the term “Reader” is used to refer to a source of raw EPC data 280
events. An extremely common type of source, of course, is an actual RFID reader, which 281
generates EPC data by using an RF protocol to read EPC codes from RFID tags. But a 282
Reader could just as easily be an EPC-compatible bar code reader, or even a person 283
typing on a keyboard. Moreover, Readers as used in this specification may not 284
necessarily be in one-to-one correspondence with hardware devices; this is explored in 285
more depth in Section 7. Hence, the term “Reader” is just a convenient shorthand for 286
“raw EPC data event source.” When used in this special sense, the word Reader will 287
always be capitalized. For purposes of discussion, it will sometimes be necessary to 288
speak of tags moving within the detection zone of a Reader; while this terminology is 289
directly germane to RFID readers, it should be obvious what the corresponding meaning 290
would be for other types of Readers. 291

A read cycle is the smallest unit of interaction with a Reader. The result of a read cycle 292
is a set of EPCs. In the case of an RFID reader antenna, the EPCs in a read cycle are 293
sometimes those obtained in a single operation of the reader’s RF protocol, though this is 294

http://www.epcglobalinc.org

Copyright © 2005, 2004 EPCglobal Inc™, All Rights Reserved. Page 10 of 71

not necessarily the case. The output of a read cycle is the input to the ALE layer; i.e., it is 295
the interface between the Raw Tag Read Layer and the ALE Layer in the diagram of 296
Section 2. As was noted earlier, this interface could be an actual software or network 297
interface between a reader device and a middleware implementation, but this is not 298
necessarily the case. From the ALE perspective, a read cycle is a single event containing 299
a set of EPCs, with nothing more implied. 300

An event cycle is one or more read cycles, from one or more Readers that are to be 301
treated as a unit from a client perspective. It is the smallest unit of interaction between 302
the ALE interface and a client. Referring to the diagram of Section 2, clients in the 303
Application Business Logic Layer specify the boundaries of event cycles to the ALE 304
layer as part of a request for a report. 305

A report is data about an event cycle communicated from the ALE implementation to a 306
client. The report is the output of the ALE layer, communicated to the Application 307
Business Logic Layer. 308

As tags or other carriers of EPC data move in and out of the detection zone of a Reader, 309
the EPCs reported in each read cycle change. Within an event cycle, the same tag may be 310
read several times (if the tag remains within the detection zone of any of the Readers 311
specified for that event cycle). Section 8.2.1 specifies how event cycle boundaries may: 312

• Extend for a specified duration (interval of real time); e.g., accumulate reads into 313
five-second intervals. 314

• Occur periodically; e.g., report only every 30 minutes, regardless of the read cycle. 315

• Be triggered by external events; e.g., an event cycle starts when a pallet on a conveyer 316
triggers an electric eye upstream of a portal, and ends when it crosses a second 317
electric eye downstream of a portal. 318

• Be delimited when no new EPCs are detected by any Reader specified for that event 319
cycle for a specified interval of time. 320

• Simply be every read cycle. (This possibility is not provided for in Section 8.2, but 321
may be available through vendor extensions.) 322

A client must specify one of these methods when requesting a report. (The complete set 323
of available options is described normatively in Section 8.2.1.) 324

The net picture looks something like this: 325

http://www.epcglobalinc.org

Copyright © 2005, 2004 EPCglobal Inc™, All Rights Reserved. Page 11 of 71

 326
While the diagram shows read cycles arising from a single Reader, in practice a given 327
event cycle may collect read cycles from more than one Reader. As the diagram 328
suggests, there may be more than one active event cycle at any point in time. Multiple 329
active event cycles may start and end with different read cycles, and may overlap in 330
arbitrary ways. They may gather data from the same Readers, from different Readers, or 331
from arbitrarily overlapping sets of Readers. Multiple active event cycles could arise 332
from one client making several simultaneous requests, or from independent clients. In all 333
cases, however, the same read cycles are shared by all active event cycles that request 334
data from a given Reader. 335

The set of EPCs in a given read cycle from a given Reader is denoted by S. In the picture 336
above, S1 = {EPC1, EPC2, EPC3} and S2 = {EPC1, EPC2, EPC4}. 337

An event cycle is treated as a unit by clients, so clients do not see any of the internal 338
structure of the event cycle. All that is relevant, therefore, is the complete set of EPCs 339
occurring in any of the read cycles that make up the event cycle, from any of the Readers 340
in the set specified for the event cycle, with duplicates removed. This is simply the union 341
of the read cycle sets: E = S1 U S2 U …. In the example above for Client 1 Event 342
Cycle 1 we have E1.1 = {EPC1, EPC2, EPC3, EPC4, EPC5}. 343

Clients get information about event cycles through reports. A report is specified by a 344
combination of these three parameters: 345

• What set R to report, which may be 346

• The complete set from the current event cycle R = Ecur; or 347

Read Cycle 2 Read Cycle 3

EPC1
EPC2
EPC3

EPC1
EPC2

EPC4
EPC3

EPC5
Read Cycle 1

Client 1 Event Cycle 1

Report Report

Read Cycle 5 Read Cycle 6

EPC3
EPC4

EPC3

EPC5
Read Cycle 4

Report

Report

EPC5

EPC3

EPC5
Read Cycle 7

EPC3

EPC5

Client 2 Event Cycle 1

Client 3
Event

Cycle 1
Client 2 Event Cycle 2

Report

Report

http://www.epcglobalinc.org

Copyright © 2005, 2004 EPCglobal Inc™, All Rights Reserved. Page 12 of 71

• The differential set that only includes differences of the current event cycle 348
relative to the previous one (assuming the same event cycle boundaries). This can 349
be the set of additions R = (Ecur – Eprev) or the set of deletions R = (Eprev – 350
Ecur), where ‘–’ denotes the set difference operator. 351

• An optional filter F(R) to apply, including as part of the standard ALE interface: 352

• One or more object types derived from the “filter bits” of the EPC Tag Data 353
Standard [TDS1.1], including “product” objects (e.g., pallet, case, etc.) as well as 354
“location” objects (e.g., warehouse slots, trucks, retail shelves, etc., that contain 355
embedded EPC tags) 356

• A specific list of EPCs 357

• A range of EPCs 358

• Whether to report 359

• The members of the set, F(R) (i.e., the EPCs themselves), possibly grouped as 360
described in Section 5, and in what format (e.g., pure identity URI, tag URI, raw 361
binary, etc); 362

• The quantity, or cardinality, of the set |F(R)|, or of the groups making up the set as 363
described in Section 5. 364

The available options are described normatively in Section 8.2. 365

A client may require more than one report from a given event cycle; e.g., a smart shelf 366
application may require both an additions report and a deletions report. 367

This all adds up to an ALE Layer API in which the primary interaction involves: (1) a 368
client specifying: (a) one or more Readers (this is done indirectly, as explained in 369
Section 7) (b) event cycle boundaries as enumerated above, and (c) a set of reports as 370
defined above; and (2) the ALE Layer responding by returning the information implied 371
by that report specification for one or more event cycles. This may be done in a “pull” 372
mode, where the client asks for a report or reports (also specifying how the event cycle is 373
to be delimited) and the ALE Layer in turn initiates or waits for read events, filters/counts 374
the data, and returns the report(s). It may also be done in a “push” mode, where the client 375
registers a subscription with a report set and event cycle boundary specification, and 376
thereafter the ALE Layer asynchronously sends reports to the client when event cycles 377
complete. The complete details of the API, the information required to specify an event 378
cycle, and the information returned to the client when an event cycle completes are 379
spelled out in Sections 8.1, 8.2, and 8.3, respectively. Examples of an event cycle 380
specification and event cycle reports in XML are given in Section 10. 381

Note that because the filtering operations commute with the set union and difference 382
operations, there is a great deal of freedom in how an ALE implementation actually 383
carries out the task of fulfilling a report request. For example, in one implementation, 384
there may be a Reader that is capable of doing filtering directly within the Reader, while 385
in a second implementation the Reader may not be capable of filtering and so software 386
implementing the ALE API must do it. But the ALE API itself need not change – the 387

http://www.epcglobalinc.org

Copyright © 2005, 2004 EPCglobal Inc™, All Rights Reserved. Page 13 of 71

client specifies the reports, and the implementation of the API decides where best to carry 388
out the requested filtering. 389

5 Group Reports 390
Sometimes it is useful to group EPCs read during an event cycle based on portions of the 391
EPC or attributes of the objects identified by the EPCs. For example, in a shipment 392
receipt verification application, it is useful to know the quantity of each type of case (i.e., 393
each distinct case GTIN), but not necessarily the serial number of each case. This 394
requires slightly more complex processing, based on the notion of a grouping operator. 395

A grouping operator is a function G that maps an EPC code into some sort of group 396
code g. For example, a grouping operator might map an EPC code into a GTIN group, or 397
simply into the upper bits (manufacturer and product) of the EPC. Other grouping 398
operators might be based on other information available on an EPC tag, such as the filter 399
code that implies the type of object (i.e., pallet, case, item, etc.). 400

The notation S↓g means the subset of EPCs s1, s2, … in the set S that belong to group g. 401
That is, S↓g ≡ { s in S | G(s) = g }. 402

A group membership report for grouping operator G is a set of pairs, where the first 403
element in each pair is a group name g, and the second element is the list of EPCs that 404
fall into that group, i.e., S↓g. 405

A group cardinality report is similar, but instead of enumerating the EPCs in each group, 406
the group cardinality report just reports how many of each there are. That is, the group 407
cardinality report for grouping operator G is a set of pairs, where the first element in each 408
pair is a group name g, and the second element is the number of EPCs that fall into that 409
group, i.e., |S↓g|. 410

Formally, then, the reporting options from the last section are: 411

• Whether to report 412

• A group membership (group list) report for one or more specified grouping 413
operators Gi, which may include, and may possibly be limited to, the default 414
(unnamed) group. In mathematical notation: { (g, F(R)↓g) | F(R)↓g is non-empty 415
}. 416

• A group cardinality (group count) report for one or more specified grouping 417
operators Gi, which may include, and may possibly be limited to, the default 418
(unnamed) group. In mathematical notation: { (g, |F(R)↓g|) | F(R)↓g is non-419
empty }. 420

6 Read Cycle Timing 421
The ALE API is intentionally silent about the timing of read cycles. Clients may specify 422
the boundaries of event cycles, which accumulate data from one or more underlying read 423
cycles, but the API does not provide a client with explicit control over the frequency at 424
which read cycles are completed. There are several reasons for this: 425

http://www.epcglobalinc.org

Copyright © 2005, 2004 EPCglobal Inc™, All Rights Reserved. Page 14 of 71

• A client or clients may make simultaneous requests for event cycle reports that may 426
have differing event cycle boundaries and different report specifications. In this case, 427
clients must necessarily share a common view of when and how frequently read 428
cycles take place. Specifying the read cycle frequency outside of any event cycle 429
request insures that clients cannot make contradictory demands on read cycles. 430

• In cases where there are many readers in physical proximity (perhaps communicating 431
to different ALE implementations), the read cycle frequency must be carefully tuned 432
and coordinated to avoid reader interference. This coordination generally requires 433
physical-level information that generally would be (and should be) unknown to a 434
client operating at the ALE level. 435

• The ALE API is designed to provide access to data from a wide variety of “Reader” 436
sources, which may have very divergent operating principles. If the ALE API were to 437
provide explicit control over read cycle timing, it would necessarily make 438
assumptions about the source of read cycle data that would limit its applicability. For 439
example, if the ALE API were to provide a parameter to clients to set the frequency 440
of read cycles, it would assume that every Reader provides data on a fixed, regular 441
schedule. 442

In light of these considerations, there is no standard way provided by ALE for clients to 443
control read cycle timing. Implementations of ALE may provide different means for this, 444
e.g., configuration files, administrative interfaces, and so forth. 445

Regardless of how a given ALE implementation provides for the configuration of read 446
cycle timing, the ALE implementation always has the freedom to suspend Reader activity 447
during periods when no event cycles requiring data from a given Reader are active. 448

7 Logical Reader Names 449
In specifying an event cycle, an ALE client names one or more Readers of interest. This 450
is usually necessary, as an ALE implementation may manage many readers that are used 451
for unrelated purposes. For example, in a large warehouse, there may be ten loading 452
dock doors each having three RFID readers; in such a case, a typical ALE request may be 453
directed at the three readers for a particular door, but it is unlikely that an application 454
tracking the flow of goods into trucks would want the reads from all 30 readers to be 455
combined into a single event cycle. 456

This raises the question of how ALE clients specify which reader devices are to be used 457
for a given event cycle. One possibility is to use identities associated with the reader 458
devices themselves, e.g., a unique name, serial number, EPC, IP address, etc. This is 459
undesirable for several reasons: 460

• The exact identities of reader devices deployed in the field are likely to be unknown 461
at the time an application is authored and configured. 462

• If a reader device is replaced, this unique reader device identity will change, forcing 463
the application configuration to be changed. 464

http://www.epcglobalinc.org

Copyright © 2005, 2004 EPCglobal Inc™, All Rights Reserved. Page 15 of 71

• If the number of reader devices must change – e.g., because it is discovered that four 465
reader devices are required instead of three to obtain adequate coverage of a 466
particular loading dock door – then the application must be changed. 467

To avoid these problems, ALE introduces the notion of a “logical reader.” Logical 468
readers are abstract names that a client uses to refer to one or more Readers that have a 469
single logical purpose; e.g., DockDoor42. Within the implementation of ALE, an 470
association is maintained between logical names such as DockDoor42 and the physical 471
reader devices assigned to fulfill that purpose. Any ALE event cycle specification that 472
refers to DockDoor42 is understood by the ALE implementation to refer to the physical 473
reader (or readers) associated with that name. 474

Logical names may also be used to refer to sources of raw EPC events that are 475
synthesized from various sources. For example, one vendor may have a technology for 476
discriminating the physical location of tags by triangulating the results from several 477
reader devices. This could be exposed in ALE by assigning a synthetic logical reader 478
name for each discernable location. 479

Different ALE implementations may provide different ways of mapping logical names to 480
physical reader devices, synthetic readers, and other sources of EPC events. This is a key 481
extensibility point. At a minimum, however, all ALE implementations SHOULD provide 482
a straightforward way to map a logical name to a list of read event sources, and where 483
physical readers allow for independent control over multiple antennas and multiple tag 484
protocols, each combination of (reader, antenna, protocol) should be treated as a separate 485
read event source for this purpose. To illustrate, an ALE implementation may maintain a 486
table like this: 487

Physical Reader Devices Logical Reader
Name Reader Name Antenna Protocol

Acme42926 0 UHF

Acme42926 1 UHF

DockDoor42

Acme43629 0 UHF

Acme44926 0 UHF

Acme44926 1 UHF

DockDoor43

Acme49256 0 UHF

 488

(It must be emphasized that the table above is meant to be illustrative of the kind of 489
configuration data an ALE implementation might maintain, not a normative specification 490
of what configuration data an ALE implementation must maintain.) 491

More elaborate implementations of ALE, such as those that provide synthesized logical 492
readers such as the triangulation example above, will require more elaborate 493
configuration data. Tables of this kind may be established through static configuration, 494

http://www.epcglobalinc.org

Copyright © 2005, 2004 EPCglobal Inc™, All Rights Reserved. Page 16 of 71

or through more dynamic discovery mechanisms. The method for establishing and 495
maintaining configuration of this kind is outside the scope of this specification. 496

To summarize, the definition of ALE relies upon several related concepts: 497

• A logical reader is a name that an ALE client uses to refer to one or more, raw EPC 498
data event sources (“Readers”). In terms of the formal model of Section 3, an event 499
cycle aggregates read cycle data from all of the Readers that are associated with the 500
set of logical readers the ALE client specifies in its request. 501

• A Reader is a raw EPC data event source. A Reader provides EPC data to an ALE 502
implementation in a series of read cycles, each containing a list of EPCs. A Reader 503
may map into physical devices in a variety of ways, including: 504

• A Reader may map directly to a single physical device; e.g., a one-antenna RFID 505
reader, a bar code scanner, or a multi-antenna RFID reader where data from all 506
antennas is always combined. 507

• Several Readers may map to the same physical device; e.g., a multi-antenna RFID 508
reader where each antenna is treated as an independent source (in which case 509
there would be a separate Reader for each antenna). 510

• A Reader may map to more than one physical device; e.g., several RFID devices 511
are used to triangulate location information to create synthesized read cycles for 512
virtual “Readers” associated with different spatial zones. 513

8 ALE API 514
This section defines normatively the programmatic interface to ALE. The external 515
interface is defined by the ALE class (Section 8.1). This interface makes use of a number 516
of complex data types that are documented in the sections following Section 8.1. 517

Implementations may expose the ALE interface via a wire protocol, or via a direct API in 518
which clients call directly into code that implements ALE. This section of the document 519
does not define the concrete wire protocol or programming language-specific API, but 520
instead defines only the abstract syntax. Section 11 of the document specifies the 521
required binding of the API to a WS-i compliant SOAP protocol. Section 10 specifies the 522
standard way in which the two major data types in this API, the Event Cycle 523
Specification and the Event Cycle Report, are rendered in XML. Implementations may 524
provide additional bindings of the API, including bindings to particular programming 525
languages, and of the data types. 526

The general interaction model is that there are one or more clients that make method calls 527
to the ALE interface defined in Section 8.1. Each method call is a request, which causes 528
the ALE implementation to take some action and return results. Thus, methods of the 529
ALE interface are synchronous. 530

The ALE interface also provides a way for clients to subscribe to events that are delivered 531
asynchronously. This is done through methods that take a notificationURI as an 532
argument. Such methods return immediately, but subsequently the ALE implementation 533
may asynchronously deliver information to the consumer denoted by the 534

http://www.epcglobalinc.org

Copyright © 2005, 2004 EPCglobal Inc™, All Rights Reserved. Page 17 of 71

notificationURI. Different ALE implementations MAY provide a variety of 535
available notification means (e.g., JMS, MQ-Series, TIBCO, e-mail, SOAP, etc.); this is 536
intended to be a point of extensibility. Section 9 specifies notification means that are 537
standardized, and specifies the conformance requirement (MAY, SHOULD, SHALL) for 538
each. 539

In the sections below, the API is described using UML class diagram notation, like so: 540

dataMember1 : Type1 541
dataMember2 : Type2 542
--- 543
method1(ArgName:ArgType, ArgName:ArgType, …) : ReturnType 544
method2(ArgName:ArgType, ArgName:ArgType, …) : ReturnType 545

Within the UML descriptions, the notation <<extension point>> identifies a place 546
where implementations SHALL provide for extensibility through the addition of new 547
data members and/or methods. Extensibility mechanisms SHALL provide for both 548
proprietary extensions by vendors of ALE-compliant products, and for extensions defined 549
by EPCglobal through future versions of this specification or through new specifications. 550

In the case of the standard XML bindings for ECSpec and ECReports, the extension 551
points are implemented within the XML schema following the methodology described in 552
Section 10.1. In the case of the standard SOAP binding for the ALE interface, the 553
extension point is implemented simply by adding new operations to the WSDL. 554

http://www.epcglobalinc.org

Copyright © 2005, 2004 EPCglobal Inc™, All Rights Reserved. Page 18 of 71

8.1 ALE – Main API Class 555
--- 556
define(specName:string, spec:ECSpec) : void 557
undefine(specName:string) : void 558
getECSpec(specName:string) : ECSpec 559
getECSpecNames() : List // returns a list of specNames as 560
strings 561
subscribe(specName:string, notificationURI:string) : void 562
unsubscribe(specName:string, notificationURI:string) : void 563
poll(specName:string) : ECReports 564
immediate(spec:ECSpec) : ECReports 565
getSubscribers(specName:String) : List // of notification 566
URIs 567
getStandardVersion() : string 568
getVendorVersion() : string 569
<<extension point>> 570

An ECSpec is a complex type that defines how an event cycle is to be calculated. There 571
are two ways to cause event cycles to occur. A standing ECSpec may be posted using 572
the define method. Subsequently, one or more clients may subscribe to that ECSpec 573
using the subscribe method. The ECSpec will generate event cycles as long as there 574
is at least one subscriber. A poll call is like subscribing then unsubscribing 575
immediately after one event cycle is generated (except that the results are returned from 576
poll instead of being sent to a notificationURI). The second way is that an 577
ECSpec can be posted for immediate execution using the immediate method. This is 578
equivalent to defining an ECSpec, performing a single poll operation, and then 579
undefining it. 580

The execution of ECSpecs is defined formally as follows. An ECSpec is said to be 581
requested if any of the following is true: 582

• It has previously been defined using define, it has not yet been undefined, and 583
there has been at least one subscribe call for which there has not yet been a 584
corresponding unsubscribe call. 585

• It has previously been defined using define, it has not yet been undefined, a 586
poll call has been made, and the first event cycle since the poll was received has 587
not yet been completed. 588

• It was defined using the immediate method, and the first event cycle has not yet 589
been completed. 590

http://www.epcglobalinc.org

Copyright © 2005, 2004 EPCglobal Inc™, All Rights Reserved. Page 19 of 71

Once requested, an ECSpec is said to be active if reads are currently being accumulated 591
into an event cycle based on the ECSpec. Standing ECSpecs that are requested using 592
subscribe may transition between active and inactive multiple times. ECSpecs that 593
are requested using poll or created using immediate will transition between active 594
and inactive just once (though in the case of poll, the ECSpec remains defined 595
afterward so that it could be subsequently polled again or subscribed to). 596

This description is summarized in the state diagram below. 597

 598
The primary data types associated with the ALE API are the ECSpec, which specifies 599
how an event cycle is to be calculated, and the ECReports, which contains one or more 600
reports generated from one activation of an ECSpec. ECReports instances are both 601
returned from the poll and immediate methods, and also sent to notificationURIs 602
when ECSpecs are subscribed to using the subscribe method. The next two sections, 603
Section 8.2 and Section 8.3, specify the ECSpec and ECReports data types in full 604
detail. 605

The two methods getStandardVersion and getVendorVersion may be used 606
by ALE clients to ascertain with what version of the ALE specification an 607
implementation complies. The method getStandardVersion returns a string that 608
identifies what version of the specification this implementation complies with. The 609
possible values for this string are defined by EPCglobal. An implementation SHALL 610

Unre-
quested

Re-
quested

Active

define subscribe or poll

unsubscribe of last subscriber
undefine

Start trigger
received or

repeatPeriod
elapsed

Stop trigger received, duration
elapsed, or field stable for

stableFieldInterval

subscribe or poll,
when no startTrigger specified

immediate

immediate, when no startTrigger specified

Stop condition reached, and
only requester was poll

Stop condition reached, and
only requester was immediate

http://www.epcglobalinc.org

Copyright © 2005, 2004 EPCglobal Inc™, All Rights Reserved. Page 20 of 71

return a string corresponding to a version of this specification to which the 611
implementation fully complies, and SHOULD return the string corresponding to the latest 612
version to which it complies. To indicate compliance with this Version 1.0 of the ALE 613
specification, the implementation SHALL return the string 1.0. The method 614
getVendorVersion returns a string that identifies what vendor extensions this 615
implementation provides. The possible values of this string and their meanings are 616
vendor-defined, except that the empty string SHALL indicate that the implementation 617
implements only standard functionality with no vendor extensions. When an 618
implementation chooses to return a non-empty string, the value returned SHALL be a 619
URI where the vendor is the owning authority. For example, this may be an HTTP URL 620
whose authority portion is a domain name owned by the vendor, a URN having a URN 621
namespace identifier issued to the vendor by IANA, an OID URN whose initial path is a 622
Private Enterprise Number assigned to the vendor, etc. 623

8.1.1 Error Conditions 624
Methods of the ALE API signal error conditions to the client by means of exceptions. 625
The following exceptions are defined. All the exception types in the following table are 626
extensions of a common ALEException base type, which contains one string element 627
giving the reason for the exception. 628

Exception Name Meaning
SecurityException The operation was not permitted due to an

access control violation or other security
concern. The specific circumstances that
may cause this exception are
implementation-specific, and outside the
scope of this specification.

DuplicateNameException The specified ECSpec name already
exists.

ECSpecValidationException The specified ECSpec is invalid; e.g., it
specifies both a start trigger and a repeat
period. The complete list of rules for
generating this exception are specified in
Section 8.2.11.

InvalidURIException The URI specified for a subscriber cannot
be parsed, does not name a scheme
recognized by the implementation, or
violates rules imposed by a particular
scheme.

NoSuchNameException The specified ECSpec name does not
exist.

NoSuchSubscriberException The specified subscriber does not exist.

http://www.epcglobalinc.org

Copyright © 2005, 2004 EPCglobal Inc™, All Rights Reserved. Page 21 of 71

Exception Name Meaning
DuplicateSubscriptionException The specified ECSpec name and

subscriber URI is identical to a previous
subscription that was created and not yet
unsubscribed.

ImplementationException A generic exception thrown by the
implementation for reasons that are
implementation-specific. This exception
contains one additional element: a
severity member whose values are
either ERROR or SEVERE. ERROR
indicates that the ALE implementation is
left in the same state it had before the
operation was attempted. SEVERE
indicates that the ALE implementation is
left in an indeterminate state.

 629

The exceptions that may be thrown by each ALE method are indicated in the table below: 630

ALE Method Exceptions
define DuplicateNameException

ECSpecValidationException
SecurityException
ImplementationException

undefine NoSuchNameException
SecurityException
ImplementationException

getECSpec NoSuchNameException
SecurityException
ImplementationException

getECSpecNames SecurityException
ImplementationException

subscribe NoSuchNameException
InvalidURIException
DuplicateSubscriptionException
SecurityException
ImplementationException

unsubscribe NoSuchNameException
NoSuchSubscriberException
InvalidURIException
SecurityException
ImplementationException

http://www.epcglobalinc.org

Copyright © 2005, 2004 EPCglobal Inc™, All Rights Reserved. Page 22 of 71

ALE Method Exceptions
poll NoSuchNameException

SecurityException
ImplementationException

immediate ECSpecValidationException
SecurityException
ImplementationException

getSubscribers NoSuchNameException
SecurityException
ImplementationException

 631

8.2 ECSpec 632
An ECSpec describes an event cycle and one or more reports that are to be generated 633
from it. It contains a list of logical Readers whose read cycles are to be included in the 634
event cycle, a specification of how the boundaries of event cycles are to be determined, 635
and a list of specifications each of which describes a report to be generated from this 636
event cycle. 637

readers : List // List of logical reader names 638
boundaries : ECBoundarySpec 639
reportSpecs : List // List of one or more ECReportSpec 640
 // instances 641
includeSpecInReports : boolean 642
<<extension point>> 643
--- 644

If the readers parameter is null, omitted, is an empty list, or contains any logical 645
reader names that are not known to the implementation, then the define and 646
immediate methods SHALL raise an ECSpecValidationException. 647

If the boundaries parameter is null or omitted, then the define and immediate 648
methods SHALL raise an ECSpecValidationException. 649

If the reportSpecs parameter is null or omitted or contains an empty list, or if the list 650
contains two ECReportSpec instances with the same reportName, then the 651
define and immediate methods SHALL raise an 652
ECSpecValidationException. 653

If an ECSpec has includeSpecInReports set to true, then the ALE 654
implementation SHALL include the complete ECSpec as part of every ECReports 655
instance generated by this ECSpec. 656

http://www.epcglobalinc.org

Copyright © 2005, 2004 EPCglobal Inc™, All Rights Reserved. Page 23 of 71

8.2.1 ECBoundarySpec 657
An ECBoundarySpec specifies how the beginning and end of event cycles are to be 658
determined. 659

startTrigger : ECTrigger 660
repeatPeriod : ECTime 661
stopTrigger : ECTrigger 662
duration : ECTime 663
stableSetInterval : ECTime 664
<<extension point>> 665
--- 666

The ECTime values duration, repeatPeriod, and stableSetInterval must 667
be non-negative; otherwise, the define and immediate methods SHALL raise an 668
ECSpecValidationException. Zero means “unspecified.” 669

The startTrigger and stopTrigger parameters are optional. For each of these 670
two parameters, if the parameter is null, omitted, or is an empty string it is considered 671
“unspecified.” 672

The startTrigger and repeatPeriod parameters are mutually exclusive. If 673
startTrigger and repeatPeriod are both specified, then the define and 674
immediate methods SHALL raise an ECSpecValidationException. 675

The conditions under which an event cycle is started depends on the settings for 676
startTrigger and repeatPeriod: 677

• If startTrigger is specified and repeatPeriod is not specified, an event 678
cycle is started when: 679

• The ECSpec is in the requested state and the specified start trigger is received. 680

• If startTrigger is not specified and repeatPeriod is specified, an event 681
cycle is started when: 682

• The ECSpec transitions from the unrequested state to the requested state; or 683

• The repeatPeriod has elapsed from the start of the last event cycle, and in 684
that interval the ECSpec has never transitioned to the unrequested state. 685

• If neither startTrigger nor repeatPeriod are specified, an event cycle is 686
started when: 687

• The ECSpec transitions from the unrequested state to the requested state; or 688

• Immediately after the previous event cycle, if the ECSpec is in the requested 689
state. 690

An event cycle, once started, extends until one of the following is true: 691

http://www.epcglobalinc.org

Copyright © 2005, 2004 EPCglobal Inc™, All Rights Reserved. Page 24 of 71

• The duration, when specified, expires. 692

• When the stableSetInterval is specified, no new EPCs are reported by any 693
Reader for the specified interval (i.e., the set of EPCs being accumulated by the event 694
cycle is stable for the specified interval). In this context, “new” is to be interpreted 695
collectively among Readers contributing to this event cycle. For example, suppose a 696
given event cycle is accumulating data from Readers A and B. If Reader A completes 697
a read cycle containing EPC X, then subsequently Reader B completes a different 698
read cycle containing the same EPC X, then the occurrence of EPC X in B’s read 699
cycle is not considered “new” for the purposes of evaluating the 700
stableSetInterval. Note that in the context of the stableSetInterval, 701
the term “stable” only implies that no new EPCs are detected; it does not imply that 702
previously detected EPCs must continue to be detected. That is, only additions, and 703
not deletions, are considered in determining that the EPC set is “stable.” 704

• The stopTrigger, when specified, is received. 705

• The ECSpec transitions to the unrequested state. 706

Note that the first of these conditions to become true terminates the event cycle. For 707
example, if both duration and stableSetInterval are specified, then the event 708
cycle terminates when the duration expires, even if the reader field has not been stable 709
for the stableSetInterval. But if the set of EPCs is stable for 710
stableSetInterval, the event cycle terminates even if the total time is shorter than 711
the specified duration. 712

Note that if the repeatPeriod expires while an event cycle is in progress, it does not 713
terminate the event cycle. The event cycle terminates only when one of the four 714
conditions specified above becomes true. If, by that time, the ECSpec has not 715
transitioned to the unrequested state, then a new event cycle will start immediately, 716
following the second rule for repeatPeriod (because the repeatPeriod has 717
expired, the start condition is immediately fulfilled). 718

If no event cycle termination condition is specified in the ECBoundarySpec – that is, 719
stopTrigger, duration, and stableSetInterval are all unspecified, and 720
there is no vendor extension termination condition specified – then the define and 721
immediate methods SHALL raise an ECSpecValidationException. 722

In all the descriptions above, note that an ECSpec presented via the immediate method 723
means that the ECSpec transitions from unrequested to requested immediately upon 724
calling immediate, and transitions from requested to unrequested immediately after 725
completion of the event cycle. 726

The ECTrigger values startTrigger and stopTrigger, if specified, must 727
conform to URI syntax as defined by [RFC2396], and must be supported by the ALE 728
implementation; otherwise, the define and immediate methods SHALL raise an 729
ECSpecValidationException. 730

http://www.epcglobalinc.org

Copyright © 2005, 2004 EPCglobal Inc™, All Rights Reserved. Page 25 of 71

8.2.2 ECTime 731
ECTime denotes a span of time measured in physical time units. 732

duration : long 733
unit : ECTimeUnit 734
--- 735

8.2.3 ECTimeUnit 736
ECTimeUnit is an enumerated type denoting different units of physical time that may 737
be used in an ECBoundarySpec. 738

<<Enumerated Type>> 739
MS // Milliseconds 740

8.2.4 ECTrigger 741
ECTrigger denotes a URI that is used to specify a start or stop trigger for an event 742
cycle (see Section 8.2.1 for explanation of start and stop triggers). The interpretation of 743
this URI is determined by the ALE implementation; the kinds and means of triggers 744
supported is intended to be a point of extensibility. 745

8.2.5 ECReportSpec 746
An ECReportSpec specifies one report to be returned from executing an event cycle. 747
An ECSpec contains a list of one or more ECReportSpec instances. 748

reportName : string 749
reportSet : ECReportSetSpec 750
filter : ECFilterSpec 751
group : ECGroupSpec 752
output : ECReportOutputSpec 753
reportIfEmpty : boolean 754
reportOnlyOnChange : boolean 755
<<extension point>> 756
--- 757

The ECReportSetSpec specifies what set of EPCs is considered for reporting: all 758
currently read, additions from the previous event cycle, or deletions from the previous 759
event cycle. 760

The filter parameter (of type ECFilterSpec) specifies how the raw EPCs are 761
filtered before inclusion in the report. If any of the specified filters does not conform to 762

http://www.epcglobalinc.org

Copyright © 2005, 2004 EPCglobal Inc™, All Rights Reserved. Page 26 of 71

the EPC URI pattern syntax specified in [TDS1.1], then the define and immediate 763
methods SHALL raise an ECSpecValidationException. 764

The group parameter (of type ECGroupSpec) specifies how the filtered EPCs are 765
grouped together for reporting. If any of the grouping patterns does not conform to the 766
syntax for grouping patterns specified in Section 8.2.9, or if any two grouping patterns 767
are determined to be non-disjoint as defined in Section 8.2.9, then the define and 768
immediate methods SHALL raise an ECSpecValidationException. 769

The output parameter (of type ECReportOutputSpec) specifies whether to return 770
the EPC groups themselves or a count of each group, or both. These parameter types are 771
discussed at length in Sections 4 and 5. 772

If an ECReportSpec has reportIfEmpty set to false, then the corresponding 773
ECReport instance SHALL be omitted from the ECReports for this event cycle if the 774
final, filtered set of EPCs is empty (i.e., if the final EPC list would be empty, or if the 775
final count would be zero). 776

If an ECReportSpec has reportOnlyOnChange set to true, then the corresponding 777
ECReport instance SHALL be omitted from the ECReports for this event cycle if the 778
filtered set of EPCs is identical to the previously filtered set of EPCs. This comparison 779
takes place before the filtered set has been modified based on reportSet or output 780
parameters. The comparison also disregards whether the previous ECReports was 781
actually sent due to the effect of this boolean, or the reportIfEmpty boolean. 782

When the processing of reportIfEmpty and reportOnlyOnChange results in all 783
ECReport instances being omitted from an ECReports for an event cycle, then the 784
notification of subscribers SHALL be suppressed altogether. That is, a notification 785
consisting of an ECReports having zero contained ECReport instances SHALL NOT 786
be sent to a subscriber. (Because an ECSpec must contain at least one 787
ECReportSpec, this can only arise as a result of reportIfEmpty or 788
reportOnlyOnChange processing.) This rule only applies to subscribers (event cycle 789
requestors that were registered by use of the subscribe method); an ECReports 790
instance SHALL always be returned to the caller of immediate or poll at the end of 791
an event cycle, even if that ECReports instance contains zero ECReport instances. 792

The reportName parameter is an arbitrary string that is copied to the ECReport 793
instance created when this event cycle completes. The purpose of the reportName 794
parameter is so that clients can distinguish which of the ECReport instances that it 795
receives corresponds to which ECReportSpec instance contained in the original 796
ECSpec. This is especially useful in cases where fewer reports are delivered than there 797
were ECReportSpec instances in the ECSpec, because reportIfEmpty=false 798
or reportOnlyOnChange=true settings suppressed the generation of some reports. 799

http://www.epcglobalinc.org

Copyright © 2005, 2004 EPCglobal Inc™, All Rights Reserved. Page 27 of 71

8.2.6 ECReportSetSpec 800
ECReportSetSpec is an enumerated type denoting what set of EPCs is to be 801
considered for filtering and output: all EPCs read in the current event cycle, additions 802
from the previous event cycle, or deletions from the previous event cycle. 803

<<Enumerated Type>> 804
CURRENT 805
ADDITIONS 806
DELETIONS 807

8.2.7 ECFilterSpec 808
An ECFilterSpec specifies what EPCs are to be included in the final report. 809

includePatterns : List // List of EPC patterns 810
excludePatterns : List // List of EPC patterns 811
<<extension point>> 812
--- 813

The ECFilterSpec implements a flexible filtering scheme based on two pattern lists. 814
Each list contains zero or more EPC patterns. Each EPC pattern denotes a single EPC, a 815
range of EPCs, or some other set of EPCs. (Patterns are described in detail below in 816
Section 8.2.8.) An EPC is included in the final report if (a) the EPC does not match any 817
pattern in the excludePatterns list, and (b) the EPC does match at least one pattern 818
in the includePatterns list. The (b) test is omitted if the includePatterns list 819
is empty. 820

This can be expressed using the notation of Section 4 as follows, where R is the set of 821
EPCs to be reported from a given event cycle, prior to filtering: 822

F(R) = { epc | epc ∈ R 823
 & (epc ∈ I1 | … | epc i∈ In) 824
 & epc ∉ E1 & … & epc ∉ En } 825

where Ii denotes the set of EPCs matched by the ith pattern in the includePatterns 826
list, and Ei denotes the set of EPCs matched by the ith pattern in the 827
excludePatterns list. 828

8.2.8 EPC Patterns (non-normative) 829
EPC Patterns are used to specify filters within an ECFilterSpec. The normative 830
specification of EPC Patterns may be found in the EPCglobal Tag Data Specification 831
Version 1.1 [TDS1.1]. The remainder of this section provides a non-normative summary 832
of some of the features of that specification, to aid the reader who has not read the 833
EPCglobal Tag Data Specification in understanding the filtering aspects of the ALE API. 834

http://www.epcglobalinc.org

Copyright © 2005, 2004 EPCglobal Inc™, All Rights Reserved. Page 28 of 71

An EPC pattern is a URI-formatted string that denotes a single EPC or set of EPCs. The 835
general format is: 836
urn:epc:pat:TagFormat:Filter.Company.Item.Serial 837

where TagFormat denotes one of the tag formats defined by the Tag Data 838
Specification, and the four fields Filter, Company, Item, and SerialNumber 839
correspond to data fields of the EPC. The meaning and number of these fields, as well as 840
their formal names, varies according to what TagFormat is named. In an EPC pattern, 841
each of the data fields may be (a) a decimal integer, meaning that a matching EPC must 842
have that specific value in the corresponding field; (b) an asterisk (*), meaning that a 843
matching EPC may have any value in that field; or (c) a range denoted like [lo-hi], 844
meaning that a matching EPC must have a value between the decimal integers lo and 845
hi, inclusive. Depending on the tag format, there may be other restrictions; see the 846
EPCglobal Tag Data Specification for full details. 847

Here are some examples. In these examples, assume that all tags are of the GID-96 848
format (which lacks the Filter data field), and that 20 is the Domain Manager 849
(Company field) for XYZ Corporation, and 300 is the Object Class (Item field) for its 850
UltraWidget product. 851
urn:epc:pat:gid-96:20.300.4000 Matches the EPC for UltraWidget serial

number 4000.
urn:epc:pat:gid-96:20.300.* Matches any UltraWidget’s EPC,

regardless of serial number.
urn:epc:pat:gid-96:20.*.[5000-9999] Matches any XYZ Corporation product

whose serial number is between 5000 and
9999, inclusive.

urn:epc:pat:gid-96:*.*.* Matches any GID-96 tag

 852

8.2.9 ECGroupSpec 853
ECGroupSpec defines how filtered EPCs are grouped together for reporting. 854

patternList : List // of pattern URIs 855
--- 856

Each element of the pattern list is an EPC Pattern URI as defined by the EPCglobal Tag 857
Data Specification Version 1.1 [TDS1.1] (see Section 8.2.8 for an informal description of 858
this syntax), extended by allowing the character X in each position where a * character is 859
allowed. All restrictions on the use of the * character as defined in the Tag Data 860
Specification apply equally to the use of the X character. For example, the following are 861
legal URIs for use in the pattern list: 862
urn:epc:pat:sgtin-64:3.*.*.* 863
urn:epc:pat:sgtin-64:3.*.X.* 864

http://www.epcglobalinc.org

Copyright © 2005, 2004 EPCglobal Inc™, All Rights Reserved. Page 29 of 71

urn:epc:pat:sgtin-64:3.X.*.* 865
urn:epc:pat:sgtin-64:3.X.X.* 866

But the following are not: 867
urn:epc:pat:sgtin-64:3.*.12345.* 868
urn:epc:pat:sgtin-64:3.X.12345.* 869

Pattern URIs used in an ECGroupSpec are interpreted as follows: 870

Pattern URI Field Meaning
X Create a different group for each distinct value of this field.
* All values of this field belong to the same group.
Number Only EPCs having Number in this field will belong to this group.
[Lo-Hi] Only EPCs whose value for this field falls within the specified

range will belong to this group.

 871

Here are examples of pattern URIs used as group operators: 872

Pattern URI Meaning
urn:epc:pat:sgtin-64:X.*.*.* groups by filter value (e.g.,

case/pallet)
urn:epc:pat:sgtin-64:*.X.*.* groups by company prefix
urn:epc:pat:sgtin-64:*.X.X.* groups by company prefix and item

reference (i.e., groups by specific
product)

urn:epc:pat:sgtin-64:X.X.X.* groups by company prefix, item
reference, and filter

urn:epc:pat:sgtin-64:3.X.*.[0-100] create a different group for each
company prefix, including in each
such group only EPCs having a
filter value of 3 and serial numbers
in the range 0 through 100,
inclusive

 873

In the corresponding ECReport, each group is named by another EPC Pattern URI that 874
is identical to the group operator URI, except that the group name URI has an actual 875
value in every position where the group operator URI had an X character. 876

For example, if these are the filtered EPCs read for the current event cycle: 877
 urn:epc:tag:sgtin-64:3.0036000.123456.400 878
 urn:epc:tag:sgtin-64:3.0036000.123456.500 879

http://www.epcglobalinc.org

Copyright © 2005, 2004 EPCglobal Inc™, All Rights Reserved. Page 30 of 71

 urn:epc:tag:sgtin-64:3.0029000.111111.100 880
 urn:epc:tag:sscc-64:3.0012345.31415926 881

Then a pattern list consisting of just one element, like this: 882
 urn:epc:pat:sgtin-64:*.X.*.* 883

would generate the following groups in the report: 884

Group Name EPCs in Group
urn:epc:pat:sgtin-64:*.0036000.*.* urn:epc:tag:sgtin-64:3.0036000.123456.400

urn:epc:tag:sgtin-64:3.0036000.123456.500

urn:epc:pat:sgtin-64:*.0029000.*.* urn:epc:tag:sgtin-64:3.0029000.111111.100

[default group] urn:epc:tag:sscc-64:3.0012345.31415926

 885

Every filtered EPC that is part of the event cycle is part of exactly one group. If an EPC 886
does not match any of the EPC Pattern URIs in the pattern list, it is included in a special 887
“default group.” The name of the default group is null. In the above example, the SSCC 888
EPC did not match any pattern in the pattern list, and so was included in the default 889
group. 890

As a special case of the above rule, if the pattern list is empty (or if the group parameter 891
of the ECReportSpec is null or omitted), then all EPCs are part of the default group. 892

In order to insure that each EPC is part of only one group, there is an additional 893
restriction that all patterns in the pattern list must be pairwise disjoint. Disjointedness of 894
two patterns is defined as follows. Let Pat_i and Pat_j be two pattern URIs, written as a 895
series of fields as follows: 896

 Pat_i = urn:epc:pat:type_i:field_i_1.field_i_2.field_i_3... 897
 Pat_j = urn:epc:pat:type_j:field_j_1.field_j_2.field_j_3... 898

Then Pat_i and Pat_j are disjoint if: 899

• type_i is not equal to type_j 900

• type_i = type_j but there is at least one field k for which field_i_k and 901
field_j_k are disjoint, as defined by the table below: 902

 X * Number [Lo-Hi]

X Not disjoint Not disjoint Not disjoint Not disjoint
* Not disjoint Not disjoint Not disjoint Not disjoint
Number Not disjoint Not disjoint Disjoint if the

numbers are
different

Disjoint if the
number is not
included in the
range

[Lo-Hi] Not disjoint Not disjoint Disjoint if the
number is not

Disjoint if the
ranges do not

http://www.epcglobalinc.org

Copyright © 2005, 2004 EPCglobal Inc™, All Rights Reserved. Page 31 of 71

included in the
range

overlap

 903

The relationship of the ECGroupSpec to the group operator introduced in Section 5 is 904
defined as follows. Formally, a group operator G is specified by a list of pattern URIs: 905

 G = (Pat_1, Pat_2, ..., Pat_N) 906

Let each pattern be written as a series of fields: 907

 Pat_i = urn:epc:pat:type_i:field_i_1.field_i_2.field_i_3... 908

where each field_i_j is either X, *, Number, or [Lo-Hi]. 909

Then the definition of G(epc) is as follows. Let epc be written like this: 910
 urn:epc:tag:type_epc:field_epc_1.field_epc_2.field_epc_3... 911

The epc is said to match Pat_i if 912

• type_epc = type_i; and 913

• For each field k, one of the following is true: 914

• field_i_k = X 915

• field_i_k = * 916

• field_i_k is a number, equal to field_epc_k 917

• field_i_k is a range [Lo-Hi], and Lo ≤ field_epc_k ≤ Hi 918

Because of the disjointedness constraint specified above, the epc is guaranteed to match 919
at most one of the patterns in G. 920

G(epc) is then defined as follows: 921

• If epc matches Pat_i for some i, then 922

G(epc) = urn:epc:pat:type_epc:field_g_1.field_g_2.field_g_3... 923

where for each k, field_g_k = *, if field_i_k = *; or field_g_k = 924
field_epc_j, otherwise 925

• If epc does not match Pat_i for any i, then G(epc) = the default group. 926

8.2.10 ECReportOutputSpec 927
ECReportOutputSpec specifies how the final set of EPCs is to be reported. 928

http://www.epcglobalinc.org

Copyright © 2005, 2004 EPCglobal Inc™, All Rights Reserved. Page 32 of 71

includeEPC : boolean 929
includeTag : boolean 930
includeRawHex : boolean 931
includeRawDecimal : boolean 932
includeCount : boolean 933
<<extension point>> 934
--- 935

If any of the four booleans includeEPC, includeTag, includeRawHex, or 936
includeRawDecimal are true, the report SHALL include a list of the EPCs in the 937
final set for each group. Each element of this list, when included, SHALL include the 938
formats specified by these four Booleans. If includeCount is true, the report SHALL 939
include a count of the EPCs in the final set for each group. Both may be true, in which 940
case each group includes both a list and a count. If all five booleans includeEPC, 941
includeTag, includeRawHex, includeRawDecimal, and includeCount are 942
false, in the absence of any vendor extension to ECReportOutputSpec, then the 943
define and immediate methods SHALL raise an 944
ECSpecValidationException. 945

8.2.11 Validation of ECSpecs 946
The define and immediate methods of the ALE API (Section 8.1) SHALL raise an 947
ECSpecValidationException if any of the following are true: 948

• Any logical reader name in the readers field of ECSpec is not known to the 949
implementation. 950

• The startTrigger or stopTrigger field of ECBoundarySpec, when 951
specified, does not conform to URI syntax as defined by [RFC2396], or is not 952
supported by the ALE implementation. 953

• The duration, stableSetInterval, or repeatPeriod field of 954
ECBoundarySpec is negative. 955

• The startTrigger field of ECBoundarySpec is non-empty and the 956
repeatPeriod field of ECBoundarySpec is non-zero. 957

• No stopping condition is specified in ECBoundarySpec; i.e., neither 958
stopTrigger nor duration nor stableSetInterval nor any vendor 959
extension stopping condition is specified. 960

• The list of ECReportSpec instances is empty. 961

• Two ECReportSpec instances have identical values for their name field. 962

• The boundaries parameter of ECSpec is null or omitted. 963

http://www.epcglobalinc.org

Copyright © 2005, 2004 EPCglobal Inc™, All Rights Reserved. Page 33 of 71

• Any filter within ECFilterSpec does not conform to the EPC URI pattern syntax 964
specified in [TDS1.1]. 965

• Any grouping pattern within ECGroupSpec does not conform to the syntax for 966
grouping patterns specified in Section 8.2.9. 967

• Any two grouping patterns within ECGroupSpec are determined to be non-disjoint 968
as that term is defined in Section 8.2.9. 969

• Within any ECReportSpec of an ECSpec, the ECReportOutputSpec has no 970
output type specified; i.e., none of includeEPC, includeTag, 971
includeRawHex, includeRawDecimal, includeCount, nor any vendor 972
extension output type is specified as true. 973

8.3 ECReports 974
ECReports is the output from an event cycle. 975

specName : string 976
date : dateTime 977
ALEID : string 978
totalMilliseconds : long 979
terminationCondition : ECTerminationCondition 980
spec : ECSpec 981
reports : List // List of ECReport 982
<<extension point>> 983
--- 984

The “meat” of an ECReports instance is the list of ECReport instances, each 985
corresponding to an ECReportSpec instance in the event cycle’s ECSpec. In addition 986
to the reports themselves, ECReports contains a number of “header” fields that provide 987
useful information about the event cycle: 988

Field Description
specName The name of the ECSpec that controlled this event cycle.

In the case of an ECSpec that was requested using the
immediate method (Section 8.1), this name is one
chosen by the ALE implementation.

date A representation of the date and time when the event
cycle ended. For bindings in which this field is
represented textually, an ISO-8601 compliant
representation SHOULD be used.

ALEID An identifier for the deployed instance of the ALE
implementation. The meaning of this identifier is

http://www.epcglobalinc.org

Copyright © 2005, 2004 EPCglobal Inc™, All Rights Reserved. Page 34 of 71

Field Description

outside the scope of this specification.
totalMilliseconds The total time, in milliseconds, from the start of the

event cycle to the end of the event cycle.
terminationCondition Indicates what kind of event caused the event cycle to

terminate: the receipt of an explicit stop trigger, the
expiration of the event cycle duration, or the read field
being stable for the prescribed amount of time. These
correspond to the possible ways of specifying the end of
an event cycle as defined in Section 8.2.1.

spec A copy of the ECSpec that generated this ECReports
instance. Only included if the ECSpec has
includeSpecInReports set to true.

 989

8.3.1 ECTerminationCondition 990
ECTerminationCondition is an enumerated type that describes how an event cycle 991
was ended. 992

<<Enumerated Type>> 993
TRIGGER 994
DURATION 995
STABLE_SET 996
UNREQUEST 997

The first three values, TRIGGER, DURATION, and STABLE_SET, correspond to the 998
receipt of an explicit stop trigger, the expiration of the event cycle duration, or the set 999
of EPCs being stable for the event cycle stableSetInterval, respectively. These 1000
are the possible stop conditions described in Section 8.2.1. The last value, UNREQUEST, 1001
corresponds to an event cycle being terminated because there were no longer any clients 1002
requesting it. By definition, this value cannot actually appear in an ECReports 1003
instance sent to any client. 1004

8.3.2 ECReport 1005
ECReport represents a single report within an event cycle. 1006

http://www.epcglobalinc.org

Copyright © 2005, 2004 EPCglobal Inc™, All Rights Reserved. Page 35 of 71

reportName : string 1007
groups : List // List of ECReportGroup instances 1008
<<extension point>> 1009
--- 1010

The reportName field is a copy of the reportName field from the corresponding 1011
ECReportSpec within the ECSpec that controlled this event cycle. The groups 1012
field is a list containing one element for each group in the report as controlled by the 1013
group field of the corresponding ECReportSpec. When no grouping is specified, the 1014
groups list just consists of the single default group. 1015

8.3.3 ECReportGroup 1016
ECReportGroup represents one group within an ECReport. 1017

groupName : string 1018
groupList : ECReportGroupList 1019
groupCount : ECReportGroupCount 1020
<<extension point>> 1021
--- 1022

The groupName SHALL be null for the default group. The groupList field SHALL 1023
be null if the includeEPC, includeTag, includeRawHex, and 1024
includeRawDecimal fields of the corresponding ECReportOutputSpec are all 1025
false (unless ECReportOutputSpec has vendor extensions that cause groupList 1026
to be included). The groupCount field SHALL be null if the includeCount field 1027
of the corresponding ECReportOutputSpec is false (unless 1028
ECReportOutputSpec has vendor extensions that cause groupCount to be 1029
included). 1030

8.3.4 ECReportGroupList 1031
An ECReportGroupList SHALL be included in an ECReportGroup when any of 1032
the four boolean fields includeEPC, includeTag, includeRawHex, and 1033
includeRawDecimal of the corresponding ECReportOutputSpec are true. 1034

members : List //List of ECReportGroupListMember instances 1035
<<extension point>> 1036
--- 1037

The order in which EPCs are enumerated within the list is unspecified. 1038

http://www.epcglobalinc.org

Copyright © 2005, 2004 EPCglobal Inc™, All Rights Reserved. Page 36 of 71

8.3.5 ECReportGroupListMember 1039
Each member of the ECReportGroupList is an ECReportGroupListMember as 1040
defined below. The reason for having ECReportGroupListMember is to allow 1041
multiple EPC formats to be included, and to provide an extension point for adding per-1042
EPC information to the list report. 1043

epc : URI 1044
tag : URI 1045
rawHex : URI 1046
rawDecimal : URI 1047
<<extension point> 1048
--- 1049

Each of these fields SHALL contain a URI as described below or be null, depending on 1050
the value of a boolean in the corresponding ECReportOutputSpec. Specifically, the 1051
epc field SHALL be non-null if and only if the includeEPC field of 1052
ECReportOutputSpec is true, the tag field SHALL be non-null according to 1053
includeTag, the rawHex field SHALL be non-null according to includeRawHex, 1054
and the rawDecimal field SHALL be non-null according to includeDecimal. 1055

When non-null, the epc field SHALL contain an EPC represented as a pure identity URI 1056
according to the EPCglobal Tag Data Specification (urn:epc:id:…). This URI 1057
SHALL be determined using the first procedure given in Section 5 of [TDS1.1]. If that 1058
procedure fails in any step, the epc field SHALL instead contain a raw decimal URI 1059
determined using Step 20 of the second procedure given in Section 5 of [TDS1.1]. 1060

When non-null, the tag field SHALL contain an EPC represented as a tag URI 1061
according to the EPCglobal Tag Data Specification (urn:epc:tag:…). This URI 1062
SHALL be determined using the second procedure given in Section 5 of [TDS1.1]. 1063

When non-null, the rawDecimal field SHALL contain a raw tag value represented as a 1064
raw decimal URI according to the EPCglobal Tag Data Specification 1065
(urn:epc:raw:…). This URI SHALL be determined using Step 20 of the second 1066
procedure given in Section 5 of [TDS1.1]. 1067

When non-null, the rawHex field SHALL contain a raw tag value represented as a raw 1068
hexadecimal URI according to the following extension to the EPCglobal Tag Data 1069
Specification. The URI SHALL be determined by concatenating the following: the 1070
string urn:epc:raw:, the length of the tag value in bits, a dot (.) character, a 1071
lowercase x character, and the tag value considered as a single hexadecimal integer. The 1072
length value preceding the dot character SHALL have no leading zeros. The 1073
hexadecimal tag value following the dot SHALL have a number of characters equal to the 1074
length of the tag value in bits divided by four and rounded up to the nearest whole 1075
number, and SHALL only use uppercase letters for the hexadecimal digits A, B, C, D, E, 1076
and F. 1077

http://www.epcglobalinc.org

Copyright © 2005, 2004 EPCglobal Inc™, All Rights Reserved. Page 37 of 71

Each distinct tag value included in the report SHALL have a distinct 1078
ECReportGroupListMember element in the ECReportGroupList, even if those 1079
ECReportGroupListMember elements would be identical due to the formats 1080
selected. In particular, it is possible for two different tags to have the same pure identity 1081
EPC representation; e.g., two SGTIN-64 tags that differ only in the filter bits. If both 1082
tags are read in the same event cycle, and ECReportOutputSpec specified 1083
includeEPC true and all other formats false, then the resulting 1084
ECReportGroupList SHALL have two ECReportGroupListMember elements, 1085
each having the same pure identity URI in the epc field. In other words, the result 1086
should be equivalent to performing all duplicate removal, additions/deletions processing, 1087
grouping, and filtering before converting the raw tag values into the selected 1088
representation(s). 1089

Explanation (non-normative): The situation in which this rule applies is expected to be 1090
extremely rare. In theory, no two tags should be programmed with the same pure 1091
identity, even if they differ in filter bits or other fields not part of the pure identity. But 1092
because the situation is possible, it is necessary to specify a definite behavior in this 1093
specification. The behavior specified above is intended to be the most easily 1094
implemented. 1095

8.3.6 ECReportGroupCount 1096
An ECReportGroupCount is included in an ECReportGroup when the 1097
includeCount field of the corresponding ECReportOutputSpec is true. 1098

count : int 1099
<<extension point>> 1100
--- 1101

The count field is the total number of distinct EPCs that are part of this group. 1102

9 Standard Notification URIs 1103
This section specifies the syntax and semantics of standard URIs that may be used in 1104
conjunction with the subscribe and unsubscribe methods of the main ALE 1105
interface (Section 8.1). Each subsection below specifies the conformance requirement 1106
(MAY, SHOULD, SHALL) for each standard URI. 1107

All notification URIs, whether standardized as a part of this specification or not, must 1108
conform to the general syntax for URIs as defined in [RFC2396]. Each notification URI 1109
scheme may impose additional constraints upon syntax. 1110

9.1 HTTP Notification URI 1111
The HTTP notification URI provides for delivery of ECReports in XML via the HTTP 1112
protocol using the POST operation. Implementations SHOULD provide support for this 1113
notification URI. 1114

http://www.epcglobalinc.org

Copyright © 2005, 2004 EPCglobal Inc™, All Rights Reserved. Page 38 of 71

The syntax for HTTP notification URIs as used by ALE is defined in [RFC2616], 1115
Section 3.2.2. Informally, an HTTP URI has one of the two following forms: 1116
http://host:port/remainder-of-URL 1117
http://host/remainder-of-URL 1118

where 1119

• host is the DNS name or IP address of the host where the receiver is listening for 1120
incoming HTTP connections. 1121

• port is the TCP port on which the receiver is listening for incoming HTTP 1122
connections. The port and the preceding colon character may be omitted, in which 1123
case the port defaults to 80. 1124

• remainder-of-URL is the URL to which an HTTP POST operation will be 1125
directed. 1126

The ALE implementation delivers event cycle reports by sending an HTTP POST request 1127
to receiver designated in the URI, where remainder-of-URL is included in the HTTP 1128
request-line (as defined in [RFC2616]), and where the payload is the ECReports 1129
instance encoded in XML according to the schema specified in Section 10.2. 1130

The interpretation by the ALE implementation of the response code returned by the 1131
receiver is outside the scope of this specification; however, all implementations SHALL 1132
interpret a response code 2xx (that is, any response code between 200 and 299, inclusive) 1133
as a normal response, not indicative of any error. 1134

9.2 TCP Notification URI 1135
The TCP notification URI provides for delivery of ECReports in XML via a raw TCP 1136
connection. Implementations SHOULD provide support for this notification URI. 1137

The syntax for TCP notification URIs as used by ALE is as follows: 1138
tcp_URL = "tcp:" "//" host ":" port 1139

where the syntax definition for host and port is specified in [RFC2396]. 1140

Informally, a TCP URI has the following form: 1141
tcp://host:port 1142

The ALE implementation delivers an event cycle report by opening a new TCP 1143
connection to the specified host and port, writing to the connection the ECReports 1144
instance encoded in XML according to the schema specified in Section 10.2, and then 1145
closing the connection. No reply or acknowledgement is expected by the ALE 1146
implementation. 1147

9.3 FILE Notification URI 1148
The FILE notification URI provides for writing of ECReports in XML to a file. 1149
Implementations MAY provide support for this notification URI. 1150

http://www.epcglobalinc.org

Copyright © 2005, 2004 EPCglobal Inc™, All Rights Reserved. Page 39 of 71

The syntax for FILE notification URIs as used by ALE is defined in [RFC1738], 1151
Section 3.10. Informally, an FILE URI has one of the two following forms: 1152
file://host/path 1153
file:///path 1154

where 1155

• host is the DNS name or IP address of a remote host whose filesystem is accessible 1156
to the ALE implementation. 1157

• path is the pathname of a file within the remote filesystem, or the local filesystem if 1158
host is omitted. 1159

The ALE implementation delivers an event cycle report by appending to the specified file 1160
the ECReports instance encoded in XML according to the schema specified in 1161
Section 10.2. Note that if more than one event cycle completes, the file will contain a 1162
concatenation of XML documents, rather than a single XML document. 1163

Implementations of ALE may impose additional constraints on the use of the FILE URI. 1164
For example, some implementations of ALE may support only a local filesystem while 1165
others may support only a remote filesystem, some implementations of ALE may impose 1166
further restrictions on the syntax of the path component, and so forth. This 1167
specification also does not define the behavior when path names a directory; the 1168
behavior in that case is implementation dependent. 1169

Rationale (non-normative): The intended use for the FILE notification URI is for 1170
debugging, and hence the specification is intentionally lax in order to give freedom to 1171
implementations to provide the most appropriate and useful facility given the unique 1172
circumstances of that implementation. 1173

10 XML Schema for Event Cycle Specs and Reports 1174
This section defines the standard XML representation for ECSpec instances 1175
(Section 8.2) and ECReports instances (Section 8.3), using the W3C XML Schema 1176
language [XSD1, XSD2]. Samples are also shown. 1177

The schema below conforms to EPCglobal standard schema design rules. The schema 1178
below imports the EPCglobal standard base schema, as mandated by the design rules. 1179

10.1 Extensibility Mechanism 1180
The XML schema in this section implements the <<extension point>> given in 1181
the UML of Section 8 using a methodology described in [XMLVersioning]. This 1182
methodology provides for both vendor extension, and for extension by EPCglobal in 1183
future versions of this specification or in supplemental specifications. Extensions 1184
introduced through this mechanism will be backward compatible, in that documents 1185
conforming to older versions of the schema will also conform to newer versions of the 1186
standard schema and to schema containing vendor-specific extensions. Extensions will 1187
also be forward compatible, in that documents that contain vendor extensions or that 1188

http://www.epcglobalinc.org

Copyright © 2005, 2004 EPCglobal Inc™, All Rights Reserved. Page 40 of 71

conform to newer versions of the standard schema will also conform to older versions of 1189
the schema. 1190

When a document contains extensions (vendor-specific or standardized in newer versions 1191
of schema), it may conform to more than one schema. For example, a document 1192
containing vendor extensions to the EPCglobal Version 1.0 schema will conform both to 1193
the EPCglobal Version 1.0 schema and to a vendor-specific schema that includes the 1194
vendor extensions. In this example, when the document is parsed using the standard 1195
schema there will be no type-checking of the extension elements and attributes, but when 1196
the document is parsed using the vendor-specific schema the extensions will be type-1197
checked. Similarly, a document containing new features introduced in a hypothetical 1198
EPCglobal Version 1.1 schema will conform both to the EPCglobal Version 1.0 schema 1199
and to the EPCglobal Version 1.1 schema, but type checking of the new features will 1200
only be available using the Version 1.1 schema. 1201

The design rules for this extensibility pattern are given in [XMLVersioning]. In 1202
summary, it amounts to the following rules: 1203

• For each type in which <<extension point>> occurs, include an 1204
xsd:anyAttribute declaration. This declaration provides for the addition of 1205
new attributes, either in subsequent versions of the standard schema or in vendor-1206
specific schema. 1207

• For each type in which <<extension point>> occurs, include an optional 1208
(minOccurs = 0) element named extension. The type declared for the 1209
extension element will always be as follows: 1210

 <xsd:sequence> 1211
 <xsd:any processContents="lax" minOccurs="1" maxOccurs="unbounded" 1212
 namespace="##local"/> 1213
 </xsd:sequence> 1214
 <xsd:anyAttribute processContents="lax"/> 1215

This declaration provides for forward-compatibility with new elements introduced 1216
into subsequent versions of the standard schema. 1217

• For each type in which <<extension point>> occurs, include at the end of the 1218
element list a declaration 1219

 <xsd:any processContents="lax" minOccurs="0" maxOccurs="unbounded" 1220
 namespace="##other"/> 1221

This declaration provides for forward-compatibility with new elements introduced in 1222
vendor-specific schema. 1223

The rules for adding vendor-specific extensions to the schema are as follows: 1224

• Vendor-specific attributes may be added to any type in which <<extension 1225
point>> occurs. Vendor-specific attributes SHALL NOT be in the EPCglobal ALE 1226
namespace (urn:epcglobal:ale:xsd:1). Vendor-specific attributes SHALL 1227
be in a namespace whose namespace URI has the vendor as the owning authority. (In 1228
schema parlance, this means that all vendor-specific attributes must have 1229
qualified as their form.) For example, the namespace URI may be an HTTP 1230
URL whose authority portion is a domain name owned by the vendor, a URN having 1231

http://www.epcglobalinc.org

Copyright © 2005, 2004 EPCglobal Inc™, All Rights Reserved. Page 41 of 71

a URN namespace identifier issued to the vendor by IANA, an OID URN whose 1232
initial path is a Private Enterprise Number assigned to the vendor, etc. Declarations 1233
of vendor-specific attributes SHALL specify use="optional". 1234

• Vendor-specific elements may be added to any type in which <<extension 1235
point>> occurs. Vendor-specific elements SHALL NOT be in the EPCglobal ALE 1236
namespace (urn:epcglobal:ale:xsd:1). Vendor-specific attributes SHALL 1237
be in a namespace whose namespace URI has the vendor as the owning authority (as 1238
described above). (In schema parlance, this means that all vendor-specific elements 1239
must have qualified as their form.) 1240

To create a schema that contains vendor extensions, replace the <xsd:any … 1241
namespace=”##other”/> declaration with a content group reference to a group 1242
defined in the vendor namespace; e.g., <xsd:group 1243
ref="vendor:VendorExtension">. In the schema file defining elements for 1244
the vendor namespace, define a content group using a declaration of the following 1245
form: 1246
 <xsd:group name="VendorExtension"> 1247
 <xsd:sequence> 1248
 <!-- 1249
 Definitions or references to vendor elements 1250
 go here. Each SHALL specify minOccurs="0". 1251
 --> 1252
 <xsd:any processContents="lax" 1253
 minOccurs="0" maxOccurs="unbounded" 1254
 namespace="##other"/> 1255
 </xsd:sequence> 1256
</xsd:group> 1257

(In the foregoing illustrations, vendor and VendorExtension may be any 1258
strings the vendor chooses.) 1259

Explanation (non-normative): Because vendor-specific elements must be optional, 1260
including references to their definitions directly into the ALE schema would violate the 1261
XML Schema Unique Particle Attribution constraint, because the <xsd:any …> 1262
element in the ALE schema can also match vendor-specific elements. Moving the 1263
<xsd:any …> into the vendor’s schema avoids this problem, because ##other in 1264
that schema means “match an element that has a namespace other than the vendor’s 1265
namespace.” This does not conflict with standard elements, because the element form 1266
default for the standard ALE schema is unqualified, and hence the ##other in the 1267
vendor’s schema does not match standard ALE elements, either. 1268

The rules for adding attributes or elements to future versions of the EPCglobal standard 1269
schema are as follows: 1270

• Standard attributes may be added to any type in which <<extension point>> 1271
occurs. Standard attributes SHALL NOT be in any namespace, and SHALL NOT 1272
conflict with any existing standard attribute name. 1273

http://www.epcglobalinc.org

Copyright © 2005, 2004 EPCglobal Inc™, All Rights Reserved. Page 42 of 71

• Standard elements may be added to any type in which <<extension point>> 1274
occurs. New elements are added using the following rules: 1275

• Find the innermost extension element type. 1276

• Replace the <xsd:any … namespace="##local"/> declaration with (a) 1277
new elements (which SHALL NOT be in any namespace); followed by (b) a new 1278
extension element whose type is constructed as described before. In 1279
subsequent revisions of the standard schema, new standard elements will be added 1280
within this new extension element rather than within this one. 1281

Explanation (non-normative): the reason that new standard attributes and elements are 1282
specified above not to be in any namespace is to be consistent with the ALE schema’s 1283
attribute and element form default of unqualified. 1284

10.2 Schema 1285
The following is an XML Schema (XSD) defining both ECSpec and ECReports. 1286
<?xml version="1.0" encoding="UTF-8"?> 1287
<xsd:schema targetNamespace="urn:epcglobal:ale:xsd:1" 1288
 xmlns:ale="urn:epcglobal:ale:xsd:1" 1289
 xmlns:epcglobal="urn:epcglobal:xsd:1" 1290
 xmlns:xsd="http://www.w3.org/2001/XMLSchema" 1291
 elementFormDefault="unqualified" 1292
 attributeFormDefault="unqualified" 1293
 version="1.0"> 1294
 1295
 <xsd:annotation> 1296
 <xsd:documentation xml:lang="en"> 1297
 <epcglobal:copyright> 1298
 Copyright (C) 2005, 2004 Epcglobal Inc., All Rights Reserved. 1299
 </epcglobal:copyright> 1300
 <epcglobal:disclaimer> 1301
 EPCglobal Inc., its members, officers, directors, employees, or 1302
 agents shall not be liable for any injury, loss, damages, financial 1303
 or otherwise, arising from, related to, or caused by the use of 1304
 this document. The use of said document shall constitute your 1305
 express consent to the foregoing exculpation. 1306
 </epcglobal:disclaimer> 1307
 <epcglobal:specification> 1308
 Application Level Events (ALE) version 1.0 1309
 </epcglobal:specification> 1310
 </xsd:documentation> 1311
 </xsd:annotation> 1312
 1313
 <xsd:import namespace="urn:epcglobal:xsd:1" schemaLocation="./EpcGlobal.xsd"/> 1314
 1315
 <!-- ALE ELEMENTS --> 1316
 1317
 <xsd:element name="ECSpec" type="ale:ECSpec"/> 1318
 <xsd:element name="ECReports" type="ale:ECReports"/> 1319
 1320
 <!-- ALE TYPES --> 1321
 1322
 <!-- items listed alphabetically by name --> 1323
 1324
 <!-- Some element types accommodate extensibility in the manner of 1325
 "Versioning XML Vocabularies" by David Orchard (see 1326
 http://www.xml.com/pub/a/2003/12/03/versioning.html). 1327
 1328
 In this approach, an optional <extension> element is defined 1329
 for each extensible element type, where an <extension> element 1330

http://www.epcglobalinc.org

Copyright © 2005, 2004 EPCglobal Inc™, All Rights Reserved. Page 43 of 71

 may contain future elements defined in the target namespace. 1331
 1332
 In addition to the optional <extension> element, extensible element 1333
 types are declared with a final xsd:any wildcard to accommodate 1334
 future elements defined by third parties (as denoted by the ##other 1335
 namespace). 1336
 1337
 Finally, the xsd:anyAttribute facility is used to allow arbitrary 1338
 attributes to be added to extensible element types. --> 1339
 1340
 1341
 <xsd:complexType name="ECBoundarySpec"> 1342
 <xsd:annotation> 1343
 <xsd:documentation xml:lang="en"> 1344
 A ECBoundarySpec specifies how the beginning and end of event cycles 1345
 are to be determined. The startTrigger and repeatPeriod elements 1346
 are mutually exclusive. One may, however, specify a ECBoundarySpec 1347
 with neither event cycle start condition (i.e., startTrigger nor 1348
 repeatPeriod) present. At least one event cycle stopping condition 1349
 (stopTrigger, duration, and/or stableSetInterval) must be present. 1350
 </xsd:documentation> 1351
 </xsd:annotation> 1352
 <xsd:sequence> 1353
 <xsd:element name="startTrigger" type="ale:ECTrigger" minOccurs="0"/> 1354
 <xsd:element name="repeatPeriod" type="ale:ECTime" minOccurs="0"/> 1355
 <xsd:element name="stopTrigger" type="ale:ECTrigger" minOccurs="0"/> 1356
 <xsd:element name="duration" type="ale:ECTime" minOccurs="0"/> 1357
 <xsd:element name="stableSetInterval" type="ale:ECTime" minOccurs="0"/> 1358
 <xsd:element name="extension" type="ale:ECBoundarySpecExtension" 1359
 minOccurs="0"/> 1360
 <xsd:any processContents="lax" minOccurs="0" maxOccurs="unbounded" 1361
 namespace="##other"/> 1362
 </xsd:sequence> 1363
 <xsd:anyAttribute processContents="lax"/> 1364
 </xsd:complexType> 1365
 1366
 <xsd:complexType name="ECBoundarySpecExtension"> 1367
 <xsd:sequence> 1368
 <xsd:any processContents="lax" minOccurs="1" maxOccurs="unbounded" 1369
 namespace="##local"/> 1370
 </xsd:sequence> 1371
 <xsd:anyAttribute processContents="lax"/> 1372
 </xsd:complexType> 1373
 1374
 1375
 <xsd:complexType name="ECExcludePatterns"> 1376
 <xsd:sequence> 1377
 <xsd:element name="excludePattern" type="xsd:string" minOccurs="0" 1378
 maxOccurs="unbounded"/> 1379
 </xsd:sequence> 1380
 </xsd:complexType> 1381
 1382
 <xsd:complexType name="ECFilterSpec"> 1383
 <xsd:annotation> 1384
 <xsd:documentation xml:lang="en"> 1385
 A ECFilterSpec specifies what EPCs are to be included in the final 1386
 report. The ECFilterSpec implements a flexible filtering scheme based on 1387
 pattern lists for inclusion and exclusion. 1388
 </xsd:documentation> 1389
 </xsd:annotation> 1390
 <xsd:sequence> 1391
 <xsd:element name="includePatterns" type="ale:ECIncludePatterns" 1392
 minOccurs="0"/> 1393
 <xsd:element name="excludePatterns" type="ale:ECExcludePatterns" 1394
 minOccurs="0"/> 1395
 <xsd:element name="extension" type="ale:ECFilterSpecExtension" 1396
 minOccurs="0"/> 1397
 <xsd:any processContents="lax" minOccurs="0" maxOccurs="unbounded" 1398
 namespace="##other"/> 1399
 </xsd:sequence> 1400

http://www.epcglobalinc.org

Copyright © 2005, 2004 EPCglobal Inc™, All Rights Reserved. Page 44 of 71

 <xsd:anyAttribute processContents="lax"/> 1401
 </xsd:complexType> 1402
 1403
 <xsd:complexType name="ECFilterSpecExtension"> 1404
 <xsd:sequence> 1405
 <xsd:any processContents="lax" minOccurs="1" maxOccurs="unbounded" 1406
 namespace="##local"/> 1407
 </xsd:sequence> 1408
 <xsd:anyAttribute processContents="lax"/> 1409
 </xsd:complexType> 1410
 1411
 <xsd:complexType name="ECGroupSpec"> 1412
 <xsd:sequence> 1413
 <xsd:element name="pattern" type="xsd:string" 1414
 minOccurs="0" maxOccurs="unbounded"/> 1415
 </xsd:sequence> 1416
 </xsd:complexType> 1417
 1418
 <xsd:complexType name="ECIncludePatterns"> 1419
 <xsd:sequence> 1420
 <xsd:element name="includePattern" type="xsd:string" minOccurs="0" 1421
 maxOccurs="unbounded"/> 1422
 </xsd:sequence> 1423
 </xsd:complexType> 1424
 1425
 <xsd:complexType name="ECLogicalReaders"> 1426
 <xsd:sequence> 1427
 <xsd:element name="logicalReader" type="xsd:string" maxOccurs="unbounded"/> 1428
 </xsd:sequence> 1429
 </xsd:complexType> 1430
 1431
 <xsd:complexType name="ECReport"> 1432
 <xsd:sequence> 1433
 <xsd:element name="group" type="ale:ECReportGroup" minOccurs="0" 1434
maxOccurs="unbounded"/> 1435
 <xsd:element name="extension" type="ale:ECReportExtension" 1436
 minOccurs="0"/> 1437
 <xsd:any processContents="lax" minOccurs="0" maxOccurs="unbounded" 1438
 namespace="##other"/> 1439
 </xsd:sequence> 1440
 <xsd:attribute name="reportName" type="xsd:string" use="required"/> 1441
 <xsd:anyAttribute processContents="lax"/> 1442
 </xsd:complexType> 1443
 1444
 <xsd:complexType name="ECReportExtension"> 1445
 <xsd:sequence> 1446
 <xsd:any processContents="lax" minOccurs="1" maxOccurs="unbounded" 1447
 namespace="##local"/> 1448
 </xsd:sequence> 1449
 <xsd:anyAttribute processContents="lax"/> 1450
 </xsd:complexType> 1451
 1452
 <xsd:complexType name="ECReportList"> 1453
 <xsd:sequence> 1454
 <xsd:element name="report" type="ale:ECReport" minOccurs="0" 1455
maxOccurs="unbounded"/> 1456
 </xsd:sequence> 1457
 </xsd:complexType> 1458
 1459
 <xsd:complexType name="ECReportGroup"> 1460
 <xsd:sequence> 1461
 <xsd:element name="groupList" type="ale:ECReportGroupList" minOccurs="0"/> 1462
 <xsd:element name="groupCount" type="ale:ECReportGroupCount" minOccurs="0"/> 1463
 <xsd:element name="extension" type="ale:ECReportGroupExtension" 1464
 minOccurs="0"/> 1465
 <xsd:any processContents="lax" minOccurs="0" maxOccurs="unbounded" 1466
 namespace="##other"/> 1467
 </xsd:sequence> 1468
 <!-- The groupName attribute SHALL be omitted to indicate the default group. --> 1469
 <xsd:attribute name="groupName" type="xsd:string" use="optional"/> 1470

http://www.epcglobalinc.org

Copyright © 2005, 2004 EPCglobal Inc™, All Rights Reserved. Page 45 of 71

 <xsd:anyAttribute processContents="lax"/> 1471
 </xsd:complexType> 1472
 1473
 <xsd:complexType name="ECReportGroupExtension"> 1474
 <xsd:sequence> 1475
 <xsd:any processContents="lax" minOccurs="1" maxOccurs="unbounded" 1476
 namespace="##local"/> 1477
 </xsd:sequence> 1478
 <xsd:anyAttribute processContents="lax"/> 1479
 </xsd:complexType> 1480
 1481
 <xsd:complexType name="ECReportGroupList"> 1482
 <xsd:sequence> 1483
 <xsd:element name="member" type="ale:ECReportGroupListMember" 1484
 minOccurs="0" maxOccurs="unbounded"/> 1485
 <xsd:element name="extension" type="ale:ECReportGroupListExtension" 1486
 minOccurs="0"/> 1487
 <xsd:any processContents="lax" minOccurs="0" maxOccurs="unbounded" 1488
 namespace="##other"/> 1489
 </xsd:sequence> 1490
 </xsd:complexType> 1491
 1492
 <xsd:complexType name="ECReportGroupListExtension"> 1493
 <xsd:sequence> 1494
 <xsd:any processContents="lax" minOccurs="1" maxOccurs="unbounded" 1495
 namespace="##local"/> 1496
 </xsd:sequence> 1497
 <xsd:anyAttribute processContents="lax"/> 1498
 </xsd:complexType> 1499
 1500
 <xsd:complexType name="ECReportGroupListMember"> 1501
 <xsd:sequence> 1502
 <!-- Each of the following four elements SHALL be omitted if null. --> 1503
 <xsd:element name="epc" type="epcglobal:EPC" minOccurs="0"/> 1504
 <xsd:element name="tag" type="epcglobal:EPC" minOccurs="0"/> 1505
 <xsd:element name="rawHex" type="epcglobal:EPC" minOccurs="0"/> 1506
 <xsd:element name="rawDecimal" type="epcglobal:EPC" minOccurs="0"/> 1507
 <xsd:element name="extension" type="ale:ECReportGroupListMemberExtension" 1508
 minOccurs="0"/> 1509
 <xsd:any processContents="lax" minOccurs="0" maxOccurs="unbounded" 1510
 namespace="##other"/> 1511
 </xsd:sequence> 1512
 <xsd:anyAttribute processContents="lax"/> 1513
 </xsd:complexType> 1514
 1515
 <xsd:complexType name="ECReportGroupListMemberExtension"> 1516
 <xsd:sequence> 1517
 <xsd:any processContents="lax" minOccurs="1" maxOccurs="unbounded" 1518
 namespace="##local"/> 1519
 </xsd:sequence> 1520
 <xsd:anyAttribute processContents="lax"/> 1521
 </xsd:complexType> 1522
 1523
 <xsd:complexType name="ECReportGroupCount"> 1524
 <xsd:sequence> 1525
 <xsd:element name="count" type="xsd:int"/> 1526
 <xsd:element name="extension" type="ale:ECReportGroupCountExtension" 1527
 minOccurs="0"/> 1528
 <xsd:any processContents="lax" minOccurs="0" maxOccurs="unbounded" 1529
 namespace="##other"/> 1530
 </xsd:sequence> 1531
 <xsd:anyAttribute processContents="lax"/> 1532
 </xsd:complexType> 1533
 1534
 <xsd:complexType name="ECReportGroupCountExtension"> 1535
 <xsd:sequence> 1536
 <xsd:any processContents="lax" minOccurs="1" maxOccurs="unbounded" 1537
 namespace="##local"/> 1538
 </xsd:sequence> 1539
 <xsd:anyAttribute processContents="lax"/> 1540

http://www.epcglobalinc.org

Copyright © 2005, 2004 EPCglobal Inc™, All Rights Reserved. Page 46 of 71

 </xsd:complexType> 1541
 1542
 <xsd:complexType name="ECReportOutputSpec"> 1543
 <xsd:annotation> 1544
 <xsd:documentation xml:lang="en"> 1545
 ECReportOutputSpec specifies how the final set of EPCs is to be reported 1546
 with respect to type. 1547
 </xsd:documentation> 1548
 </xsd:annotation> 1549
 <xsd:sequence> 1550
 <xsd:element name="extension" type="ale:ECReportOutputSpecExtension" 1551
 minOccurs="0"/> 1552
 <xsd:any processContents="lax" minOccurs="0" maxOccurs="unbounded" 1553
 namespace="##other"/> 1554
 </xsd:sequence> 1555
 <xsd:attribute name="includeEPC" type="xsd:boolean" default="false"/> 1556
 <xsd:attribute name="includeTag" type="xsd:boolean" default="false"/> 1557
 <xsd:attribute name="includeRawHex" type="xsd:boolean" default="false"/> 1558
 <xsd:attribute name="includeRawDecimal" type="xsd:boolean" default="false"/> 1559
 <xsd:attribute name="includeCount" type="xsd:boolean" default="false"/> 1560
 </xsd:complexType> 1561
 1562
 <xsd:complexType name="ECReportOutputSpecExtension"> 1563
 <xsd:sequence> 1564
 <xsd:any processContents="lax" minOccurs="1" maxOccurs="unbounded" 1565
 namespace="##local"/> 1566
 </xsd:sequence> 1567
 <xsd:anyAttribute processContents="lax"/> 1568
 </xsd:complexType> 1569
 1570
 1571
 <xsd:complexType name="ECReports"> 1572
 <xsd:annotation> 1573
 <xsd:documentation xml:lang="en"> 1574
 ECReports is the output from an event cycle. The "meat" of an ECReports 1575
 instance is the lists of count report instances and list report 1576
 instances, each corresponding to an ECReportSpec instance in the event 1577
 cycle's ECSpec. In addition to the reports themselves, ECReports contains 1578
 a number of "header" fields that provide useful information about the 1579
 event cycle. 1580
 </xsd:documentation> 1581
 </xsd:annotation> 1582
 <xsd:complexContent> 1583
 <xsd:extension base="epcglobal:Document"> 1584
 <xsd:sequence> 1585
 <xsd:element name="reports" type="ale:ECReportList"/> 1586
 <xsd:element name="extension" type="ale:ECReportsExtension" 1587
 minOccurs="0"/> 1588
 <xsd:element name="ECSpec" type="ale:ECSpec" minOccurs="0"/> 1589
 <xsd:any processContents="lax" minOccurs="0" maxOccurs="unbounded" 1590
 namespace="##other"/> 1591
 </xsd:sequence> 1592
 <xsd:attribute name="specName" type="xsd:string" use="required"/> 1593
 <xsd:attribute name="date" type="xsd:dateTime" use="required"/> 1594
 <xsd:attribute name="ALEID" type="xsd:string" use="required"/> 1595
 <xsd:attribute name="totalMilliseconds" type="xsd:long" use="required"/> 1596
 <xsd:attribute name="terminationCondition" 1597
 type="ale:ECTerminationCondition" use="required"/> 1598
 <xsd:attribute name="schemaURL" type="xsd:string" use="optional"/> 1599
 <xsd:anyAttribute processContents="lax"/> 1600
 </xsd:extension> 1601
 </xsd:complexContent> 1602
 </xsd:complexType> 1603
 1604
 <xsd:complexType name="ECReportsExtension"> 1605
 <xsd:sequence> 1606
 <xsd:any processContents="lax" minOccurs="1" maxOccurs="unbounded" 1607
 namespace="##local"/> 1608
 </xsd:sequence> 1609
 <xsd:anyAttribute processContents="lax"/> 1610

http://www.epcglobalinc.org

Copyright © 2005, 2004 EPCglobal Inc™, All Rights Reserved. Page 47 of 71

 </xsd:complexType> 1611
 1612
 1613
 <xsd:complexType name="ECReportSetSpec"> 1614
 <xsd:annotation> 1615
 <xsd:documentation xml:lang="en"> 1616
 ECReportSetSpec specifies which set of EPCs is to be considered for 1617
 filtering and output. 1618
 </xsd:documentation> 1619
 </xsd:annotation> 1620
 <xsd:attribute name="set" type="ale:ECReportSetEnum"/> 1621
 </xsd:complexType> 1622
 1623
 <xsd:simpleType name="ECReportSetEnum"> 1624
 <xsd:annotation> 1625
 <xsd:documentation xml:lang="en"> 1626
 ECReportSetEnum is an enumerated type denoting what set of EPCs is to be 1627
 considered for filtering and output: all EPCs read in the current event 1628
 cycle, additions from the previous event cycle, or deletions from the 1629
 previous event cycle. 1630
 </xsd:documentation> 1631
 </xsd:annotation> 1632
 <xsd:restriction base="xsd:NCName"> 1633
 <xsd:enumeration value="CURRENT"/> 1634
 <xsd:enumeration value="ADDITIONS"/> 1635
 <xsd:enumeration value="DELETIONS"/> 1636
 </xsd:restriction> 1637
 </xsd:simpleType> 1638
 1639
 <xsd:complexType name="ECReportSpec"> 1640
 <xsd:annotation> 1641
 <xsd:documentation xml:lang="en"> 1642
 A ReportSpec specifies one report to be returned from executing an event 1643
 cycle. An ECSpec may contain one or more ECReportSpec instances. 1644
 </xsd:documentation> 1645
 </xsd:annotation> 1646
 <xsd:sequence> 1647
 <xsd:element name="reportSet" type="ale:ECReportSetSpec"/> 1648
 <xsd:element name="filterSpec" type="ale:ECFilterSpec" minOccurs="0"/> 1649
 <xsd:element name="groupSpec" type="ale:ECGroupSpec" minOccurs="0"/> 1650
 <xsd:element name="output" type="ale:ECReportOutputSpec"/> 1651
 <xsd:element name="extension" type="ale:ECReportSpecExtension" 1652
 minOccurs="0"/> 1653
 <xsd:any processContents="lax" minOccurs="0" maxOccurs="unbounded" 1654
 namespace="##other"/> 1655
 </xsd:sequence> 1656
 <xsd:attribute name="reportName" type="xsd:string" use="required"/> 1657
 <xsd:attribute name="reportIfEmpty" type="xsd:boolean" default="false"/> 1658
 <xsd:attribute name="reportOnlyOnChange" type="xsd:boolean" default="false"/> 1659
 <xsd:anyAttribute processContents="lax"/> 1660
 </xsd:complexType> 1661
 1662
 <xsd:complexType name="ECReportSpecExtension"> 1663
 <xsd:sequence> 1664
 <xsd:any processContents="lax" minOccurs="1" maxOccurs="unbounded" 1665
 namespace="##local"/> 1666
 </xsd:sequence> 1667
 <xsd:anyAttribute processContents="lax"/> 1668
 </xsd:complexType> 1669
 1670
 1671
 <xsd:complexType name="ECReportSpecs"> 1672
 <xsd:sequence> 1673
 <xsd:element name="reportSpec" type="ale:ECReportSpec" 1674
 maxOccurs="unbounded"/> 1675
 </xsd:sequence> 1676
 </xsd:complexType> 1677
 1678
 <xsd:complexType name="ECSpec"> 1679
 <xsd:annotation> 1680

http://www.epcglobalinc.org

Copyright © 2005, 2004 EPCglobal Inc™, All Rights Reserved. Page 48 of 71

 <xsd:documentation xml:lang="en"> 1681
 An ECSpec describes an event cycle and one or more reports that are to 1682
 be generated from it. It contains a list of logical readers whose reader 1683
 cycles are to be included in the event cycle, a specification of read 1684
 cycle timing, a specification of how the boundaries of event cycles are 1685
 to be determined, and list of specifications each of which describes a 1686
 report to be generated from this event cycle. 1687
 </xsd:documentation> 1688
 </xsd:annotation> 1689
 <xsd:complexContent> 1690
 <xsd:extension base="epcglobal:Document"> 1691
 <xsd:sequence> 1692
 <xsd:element name="logicalReaders" type="ale:ECLogicalReaders"/> 1693
 <xsd:element name="boundarySpec" type="ale:ECBoundarySpec"/> 1694
 <xsd:element name="reportSpecs" type="ale:ECReportSpecs"/> 1695
 <xsd:element name="extension" type="ale:ECSpecExtension" 1696
 minOccurs="0"/> 1697
 <xsd:any processContents="lax" minOccurs="0" maxOccurs="unbounded" 1698
 namespace="##other"/> 1699
 </xsd:sequence> 1700
 <xsd:attribute name="includeSpecInReports" type="xsd:boolean" 1701
 default="false"/> 1702
 <xsd:anyAttribute processContents="lax"/> 1703
 </xsd:extension> 1704
 </xsd:complexContent> 1705
 </xsd:complexType> 1706
 1707
 <xsd:complexType name="ECSpecExtension"> 1708
 <xsd:sequence> 1709
 <xsd:any processContents="lax" minOccurs="1" maxOccurs="unbounded" 1710
 namespace="##local"/> 1711
 </xsd:sequence> 1712
 <xsd:anyAttribute processContents="lax"/> 1713
 </xsd:complexType> 1714
 1715
 1716
 <xsd:simpleType name="ECTerminationCondition"> 1717
 <xsd:restriction base="xsd:NCName"> 1718
 <xsd:enumeration value="TRIGGER"/> 1719
 <xsd:enumeration value="DURATION"/> 1720
 <xsd:enumeration value="STABLE_SET"/> 1721
 <xsd:enumeration value="UNREQUEST"/> 1722
 </xsd:restriction> 1723
 </xsd:simpleType> 1724
 1725
 <xsd:complexType name="ECTime"> 1726
 <xsd:annotation> 1727
 <xsd:documentation xml:lang="en"> 1728
 An ECTime specifies a time duration in physical units. 1729
 </xsd:documentation> 1730
 </xsd:annotation> 1731
 <xsd:simpleContent> 1732
 <xsd:extension base="xsd:long"> 1733
 <xsd:attribute name="unit" type="ale:ECTimeUnit"/> 1734
 </xsd:extension> 1735
 </xsd:simpleContent> 1736
 </xsd:complexType> 1737
 1738
 <xsd:simpleType name="ECTimeUnit"> 1739
 <xsd:annotation> 1740
 <xsd:documentation xml:lang="en"> 1741
 ECTimeUnit represents the supported physical time unit: millisecond 1742
 </xsd:documentation> 1743
 </xsd:annotation> 1744
 <xsd:restriction base="xsd:NCName"> 1745
 <xsd:enumeration value="MS"/> 1746
 </xsd:restriction> 1747
 </xsd:simpleType> 1748
 1749
 <xsd:complexType name="ECTrigger"> 1750

http://www.epcglobalinc.org

Copyright © 2005, 2004 EPCglobal Inc™, All Rights Reserved. Page 49 of 71

 <xsd:annotation> 1751
 <xsd:documentation xml:lang="en"> 1752
 A trigger is a URI that is used to specify a start or stop trigger for 1753
 an event cycle. 1754
 </xsd:documentation> 1755
 </xsd:annotation> 1756
 <xsd:simpleContent> 1757
 <xsd:extension base="xsd:string"/> 1758
 </xsd:simpleContent> 1759
 </xsd:complexType> 1760
</xsd:schema> 1761

10.3 ECSpec – Example (non-normative) 1762
Here is an example ECSpec rendered into XML [XML1.0]: 1763
<?xml version="1.0" encoding="UTF-8"?> 1764
<ale:ECSpec xmlns:ale="urn:epcglobal:ale:xsd:1" 1765
 xmlns:epcglobal="urn:epcglobal:xsd:1" 1766
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" 1767
 xsi:schemaLocation="urn:epcglobal:ale:xsd:1 Ale.xsd" 1768
 schemaVersion="1.0" 1769
 creationDate="2003-08-06T10:54:06.444-05:00"> 1770
 <logicalReaders> 1771
 <logicalReader>dock_1a</logicalReader> 1772
 <logicalReader>dock_1b</logicalReader> 1773
 </logicalReaders> 1774
 <boundarySpec> 1775
 <startTrigger>http://sample.com/trigger1</startTrigger> 1776
 <repeatPeriod unit="MS">20000</repeatPeriod> 1777
 <stopTrigger>http://sample.com/trigger2</stopTrigger> 1778
 <duration unit="MS">3000</duration> 1779
 </boundarySpec> 1780
 <reportSpecs> 1781
 <reportSpec reportName="report1"> 1782
 <reportSet set="CURRENT"/> 1783
 <output includeTag="true"/> 1784
 </reportSpec> 1785
 <reportSpec reportName="report2"> 1786
 <reportSet set="ADDITIONS"/> 1787
 <output includeCount="true"/> 1788
 </reportSpec> 1789
 <reportSpec reportName="report3"> 1790
 <reportSet set="DELETIONS"/> 1791
 <groupSpec> 1792
 <pattern>urn:epc:pat:sgtin-64:X.X.X.*</pattern> 1793
 </groupSpec> 1794
 <output includeCount="true"/> 1795
 </reportSpec> 1796
 </reportSpecs> 1797
</ale:ECSpec> 1798

10.4 ECReports – Example (non-normative) 1799
Here is an example ECReports rendered into XML [XML1.0]: 1800
<?xml version="1.0" encoding="UTF-8"?> 1801
<ale:ECReports xmlns:ale="urn:epcglobal:ale:xsd:1" 1802
 xmlns:epcglobal="urn:epcglobal:xsd:1" 1803
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" 1804
 xsi:schemaLocation="urn:epcglobal:ale:xsd:1 Ale.xsd" 1805
 schemaVersion="1.0" 1806
 creationDate="2003-08-06T10:54:06.444-05:00" 1807
 specName="EventCycle1" 1808
 date="2003-08-06T10:54:06.444-05:00" 1809
 ALEID="Edge34" 1810
 totalMilliseconds="3034" 1811
 terminationCondition="DURATION"> 1812

http://www.epcglobalinc.org

Copyright © 2005, 2004 EPCglobal Inc™, All Rights Reserved. Page 50 of 71

 <reports> 1813
 <report reportName="report1"> 1814
 <group> 1815
 <groupList> 1816
 <member><tag>urn:epc:tag:gid-96:10.50.1000</tag></member> 1817
 <member><tag>urn:epc:tag:gid-96:10.50.1001</tag></member> 1818
 </groupList> 1819
 </group> 1820
 </report> 1821
 <report reportName="report2"> 1822
 <group><groupCount><count>6847</count></groupCount></group> 1823
 </report> 1824
 <report reportName="report3"> 1825
 <group name="urn:epc:pat:sgtin-64:3.0037000.12345.*"> 1826
 <groupCount><count>2</count></groupCount> 1827
 </group> 1828
 <group name="urn:epc:pat:sgtin-64:3.0037000.55555.*"> 1829
 <groupCount><count>3</count></groupCount> 1830
 </group> 1831
 <group> 1832
 <groupCount><count>6842</count></groupCount> 1833
 </group> 1834
 </report> 1835
 </reports> 1836
</ale:ECReports> 1837

11 SOAP Binding for ALE API 1838

11.1 SOAP Binding 1839
The following is a Web Service Definition Language (WSDL) 1.1 [WSDL1.1] 1840
specification defining the standard SOAP binding of the ALE API. This SOAP binding is 1841
compliant with the WS-i Basic Profile Version 1.0 [WSI]. 1842
<?xml version="1.0" encoding="UTF-8"?> 1843
 1844
<!-- ALESERVICE DEFINITIONS --> 1845
<wsdl:definitions 1846
 targetNamespace="urn:epcglobal:ale:wsdl:1" 1847
 xmlns="http://schemas.xmlsoap.org/wsdl/" 1848
 xmlns:impl="urn:epcglobal:ale:wsdl:1" 1849
 xmlns:ale="urn:epcglobal:ale:xsd:1" 1850
 xmlns:epcglobal="urn:epcglobal:xsd:1" 1851
 xmlns:soapenc="http://schemas.xmlsoap.org/soap/encoding/" 1852
 xmlns:wsdl="http://schemas.xmlsoap.org/wsdl/" 1853
 xmlns:wsdlsoap="http://schemas.xmlsoap.org/wsdl/soap/" 1854
 xmlns:xsd="http://www.w3.org/2001/XMLSchema"> 1855
 1856
 <wsdl:documentation> 1857
 <epcglobal:copyright>Copyright (C) 2005, 2004 EPCglobal Inc., All Rights 1858
Reserved.</epcglobal:copyright> 1859
 <epcglobal:disclaimer>EPCglobal Inc., its members, officers, directors, employees, 1860
or agents shall not be liable for any injury, loss, damages, financial or otherwise, 1861
arising from, related to, or caused by the use of this document. The use of said 1862
document shall constitute your express consent to the foregoing 1863
exculpation.</epcglobal:disclaimer> 1864
 <epcglobal:specification></epcglobal:specification> 1865
 1866
 This WSDL document describes the types, messages, operations, and 1867
 bindings for the ALEService. 1868
 </wsdl:documentation> 1869
 1870
 <!-- ALESERVICE TYPES --> 1871
 <wsdl:types> 1872
 <xsd:schema targetNamespace="urn:epcglobal:ale:wsdl:1" 1873
 xmlns:impl="urn:epcglobal:ale:wsdl:1" 1874

http://www.epcglobalinc.org

Copyright © 2005, 2004 EPCglobal Inc™, All Rights Reserved. Page 51 of 71

 xmlns:xsd="http://www.w3.org/2001/XMLSchema"> 1875
 <xsd:import namespace="urn:epcglobal:ale:xsd:1" 1876
 schemaLocation="./ALE.xsd"/> 1877
 1878
 <!-- ALESERVICE MESSAGE WRAPPERS --> 1879
 <xsd:element name="Define" type="impl:Define"/> 1880
 <xsd:complexType name="Define"> 1881
 <xsd:sequence> 1882
 <xsd:element name="specName" type="xsd:string"/> 1883
 <xsd:element name="spec" type="ale:ECSpec"/> 1884
 </xsd:sequence> 1885
 </xsd:complexType> 1886
 1887
 <xsd:element name="Undefine" type="impl:Undefine"/> 1888
 <xsd:complexType name="Undefine"> 1889
 <xsd:sequence> 1890
 <xsd:element name="specName" type="xsd:string"/> 1891
 </xsd:sequence> 1892
 </xsd:complexType> 1893
 1894
 <xsd:element name="GetECSpec" type="impl:GetECSpec"/> 1895
 <xsd:complexType name="GetECSpec"> 1896
 <xsd:sequence> 1897
 <xsd:element name="specName" type="xsd:string"/> 1898
 </xsd:sequence> 1899
 </xsd:complexType> 1900
 <xsd:element name="GetECSpecResult" type="ale:ECSpec"/> 1901
 1902
 <xsd:element name="GetECSpecNames" type="impl:EmptyParms"/> 1903
 <xsd:element name="GetECSpecNamesResult" type="impl:ArrayOfString"/> 1904
 1905
 <xsd:element name="Subscribe" type="impl:Subscribe"/> 1906
 <xsd:complexType name="Subscribe"> 1907
 <xsd:sequence> 1908
 <xsd:element name="specName" type="xsd:string"/> 1909
 <xsd:element name="notificationURI" type="xsd:string"/> 1910
 </xsd:sequence> 1911
 </xsd:complexType> 1912
 1913
 <xsd:element name="Unsubscribe" type="impl:Unsubscribe"/> 1914
 <xsd:complexType name="Unsubscribe"> 1915
 <xsd:sequence> 1916
 <xsd:element name="specName" type="xsd:string"/> 1917
 <xsd:element name="notificationURI" type="xsd:string"/> 1918
 </xsd:sequence> 1919
 </xsd:complexType> 1920
 1921
 <xsd:element name="Poll" type="impl:Poll"/> 1922
 <xsd:complexType name="Poll"> 1923
 <xsd:sequence> 1924
 <xsd:element name="specName" type="xsd:string"/> 1925
 </xsd:sequence> 1926
 </xsd:complexType> 1927
 <xsd:element name="PollResult" type="ale:ECReports"/> 1928
 1929
 <xsd:element name="Immediate" type="impl:Immediate"/> 1930
 <xsd:complexType name="Immediate"> 1931
 <xsd:sequence> 1932
 <xsd:element name="spec" type="ale:ECSpec"/> 1933
 </xsd:sequence> 1934
 </xsd:complexType> 1935
 <xsd:element name="ImmediateResult" type="ale:ECReports"/> 1936
 1937
 <xsd:element name="GetSubscribers" type="impl:GetSubscribers"/> 1938
 <xsd:complexType name="GetSubscribers"> 1939
 <xsd:sequence> 1940
 <xsd:element name="specName" type="xsd:string"/> 1941
 </xsd:sequence> 1942
 </xsd:complexType> 1943
 <xsd:element name="GetSubscribersResult" type="impl:ArrayOfString"/> 1944

http://www.epcglobalinc.org

Copyright © 2005, 2004 EPCglobal Inc™, All Rights Reserved. Page 52 of 71

 1945
 <xsd:element name="GetStandardVersion" type="impl:EmptyParms"/> 1946
 <xsd:element name="GetStandardVersionResult" type="xsd:string"/> 1947
 1948
 <xsd:element name="GetVendorVersion" type="impl:EmptyParms"/> 1949
 <xsd:element name="GetVendorVersionResult" type="xsd:string"/> 1950
 1951
 <xsd:element name="VoidHolder" type="impl:VoidHolder"/> 1952
 <xsd:complexType name="VoidHolder"> 1953
 <xsd:sequence> 1954
 </xsd:sequence> 1955
 </xsd:complexType> 1956
 1957
 <xsd:complexType name="EmptyParms"/> 1958
 1959
 <xsd:complexType name="ArrayOfString"> 1960
 <xsd:sequence> 1961
 <xsd:element name="string" type="xsd:string" minOccurs="0" 1962
 maxOccurs="unbounded"/> 1963
 </xsd:sequence> 1964
 </xsd:complexType> 1965
 1966
 <!-- ALE EXCEPTIONS --> 1967
 <xsd:element name="ALEException" type="impl:ALEException"/> 1968
 <xsd:complexType name="ALEException"> 1969
 <xsd:sequence> 1970
 <xsd:element name="reason" type="xsd:string"/> 1971
 </xsd:sequence> 1972
 </xsd:complexType> 1973
 1974
 <xsd:element name="SecurityException" 1975
 type="impl:SecurityException"/> 1976
 <xsd:complexType name="SecurityException"> 1977
 <xsd:complexContent> 1978
 <xsd:extension base="impl:ALEException"> 1979
 <xsd:sequence/> 1980
 </xsd:extension> 1981
 </xsd:complexContent> 1982
 </xsd:complexType> 1983
 1984
 <xsd:element name="DuplicateNameException" 1985
 type="impl:DuplicateNameException"/> 1986
 <xsd:complexType name="DuplicateNameException"> 1987
 <xsd:complexContent> 1988
 <xsd:extension base="impl:ALEException"> 1989
 <xsd:sequence/> 1990
 </xsd:extension> 1991
 </xsd:complexContent> 1992
 </xsd:complexType> 1993
 1994
 <xsd:element name="ECSpecValidationException" 1995
 type="impl:ECSpecValidationException"/> 1996
 <xsd:complexType name="ECSpecValidationException"> 1997
 <xsd:complexContent> 1998
 <xsd:extension base="impl:ALEException"> 1999
 <xsd:sequence/> 2000
 </xsd:extension> 2001
 </xsd:complexContent> 2002
 </xsd:complexType> 2003
 2004
 <xsd:element name="InvalidURIException" type="impl:InvalidURIException"/> 2005
 <xsd:complexType name="InvalidURIException"> 2006
 <xsd:complexContent> 2007
 <xsd:extension base="impl:ALEException"> 2008
 <xsd:sequence/> 2009
 </xsd:extension> 2010
 </xsd:complexContent> 2011
 </xsd:complexType> 2012
 2013
 <xsd:element name="NoSuchNameException" type="impl:NoSuchNameException"/> 2014

http://www.epcglobalinc.org

Copyright © 2005, 2004 EPCglobal Inc™, All Rights Reserved. Page 53 of 71

 <xsd:complexType name="NoSuchNameException"> 2015
 <xsd:complexContent> 2016
 <xsd:extension base="impl:ALEException"> 2017
 <xsd:sequence/> 2018
 </xsd:extension> 2019
 </xsd:complexContent> 2020
 </xsd:complexType> 2021
 2022
 <xsd:element name="NoSuchSubscriberException" 2023
 type="impl:NoSuchSubscriberException"/> 2024
 <xsd:complexType name="NoSuchSubscriberException"> 2025
 <xsd:complexContent> 2026
 <xsd:extension base="impl:ALEException"> 2027
 <xsd:sequence/> 2028
 </xsd:extension> 2029
 </xsd:complexContent> 2030
 </xsd:complexType> 2031
 2032
 <xsd:element name="DuplicateSubscriptionException" 2033
 type="impl:DuplicateSubscriptionException"/> 2034
 <xsd:complexType name="DuplicateSubscriptionException"> 2035
 <xsd:complexContent> 2036
 <xsd:extension base="impl:ALEException"> 2037
 <xsd:sequence/> 2038
 </xsd:extension> 2039
 </xsd:complexContent> 2040
 </xsd:complexType> 2041
 2042
 <xsd:element name="ImplementationException" 2043
 type="impl:ImplementationException"/> 2044
 <xsd:complexType name="ImplementationException"> 2045
 <xsd:complexContent> 2046
 <xsd:extension base="impl:ALEException"> 2047
 <xsd:sequence> 2048
 <xsd:element name="severity" 2049
 type="impl:ImplementationExceptionSeverity"/> 2050
 </xsd:sequence> 2051
 </xsd:extension> 2052
 </xsd:complexContent> 2053
 </xsd:complexType> 2054
 2055
 <xsd:simpleType name="ImplementationExceptionSeverity"> 2056
 <xsd:restriction base="xsd:NCName"> 2057
 <xsd:enumeration value="ERROR"/> 2058
 <xsd:enumeration value="SEVERE"/> 2059
 </xsd:restriction> 2060
 </xsd:simpleType> 2061
 2062
 </xsd:schema> 2063
 </wsdl:types> 2064
 2065
 <!-- ALESERVICE MESSAGES --> 2066
 <wsdl:message name="defineRequest"> 2067
 <wsdl:part name="parms" element="impl:Define"/> 2068
 </wsdl:message> 2069
 <wsdl:message name="defineResponse"> 2070
 <wsdl:part name="defineReturn" element="impl:VoidHolder"/> 2071
 </wsdl:message> 2072
 2073
 <wsdl:message name="undefineRequest"> 2074
 <wsdl:part name="parms" element="impl:Undefine"/> 2075
 </wsdl:message> 2076
 <wsdl:message name="undefineResponse"> 2077
 <wsdl:part name="undefineReturn" element="impl:VoidHolder"/> 2078
 </wsdl:message> 2079
 2080
 <wsdl:message name="getECSpecRequest"> 2081
 <wsdl:part name="parms" element="impl:GetECSpec"/> 2082
 </wsdl:message> 2083
 <wsdl:message name="getECSpecResponse"> 2084

http://www.epcglobalinc.org

Copyright © 2005, 2004 EPCglobal Inc™, All Rights Reserved. Page 54 of 71

 <wsdl:part name="getECSpecReturn" element="impl:GetECSpecResult"/> 2085
 </wsdl:message> 2086
 2087
 <wsdl:message name="getECSpecNamesRequest"> 2088
 <wsdl:part name="parms" element="impl:GetECSpecNames"/> 2089
 </wsdl:message> 2090
 <wsdl:message name="getECSpecNamesResponse"> 2091
 <wsdl:part name="getECSpecNamesReturn" element="impl:GetECSpecNamesResult"/> 2092
 </wsdl:message> 2093
 2094
 <wsdl:message name="subscribeRequest"> 2095
 <wsdl:part name="parms" element="impl:Subscribe"/> 2096
 </wsdl:message> 2097
 <wsdl:message name="subscribeResponse"> 2098
 <wsdl:part name="subscribeReturn" element="impl:VoidHolder"/> 2099
 </wsdl:message> 2100
 2101
 <wsdl:message name="unsubscribeRequest"> 2102
 <wsdl:part name="parms" element="impl:Unsubscribe"/> 2103
 </wsdl:message> 2104
 <wsdl:message name="unsubscribeResponse"> 2105
 <wsdl:part name="unsubscribeReturn" element="impl:VoidHolder"/> 2106
 </wsdl:message> 2107
 2108
 <wsdl:message name="pollRequest"> 2109
 <wsdl:part name="parms" element="impl:Poll"/> 2110
 </wsdl:message> 2111
 <wsdl:message name="pollResponse"> 2112
 <wsdl:part name="pollReturn" element="impl:PollResult"/> 2113
 </wsdl:message> 2114
 2115
 <wsdl:message name="immediateRequest"> 2116
 <wsdl:part name="parms" element="impl:Immediate"/> 2117
 </wsdl:message> 2118
 <wsdl:message name="immediateResponse"> 2119
 <wsdl:part name="immediateReturn" element="impl:ImmediateResult"/> 2120
 </wsdl:message> 2121
 2122
 <wsdl:message name="getSubscribersRequest"> 2123
 <wsdl:part name="parms" element="impl:GetSubscribers"/> 2124
 </wsdl:message> 2125
 <wsdl:message name="getSubscribersResponse"> 2126
 <wsdl:part name="getSubscribersReturn" element="impl:GetSubscribersResult"/> 2127
 </wsdl:message> 2128
 2129
 <wsdl:message name="getStandardVersionRequest"> 2130
 <wsdl:part name="parms" element="impl:GetStandardVersion"/> 2131
 </wsdl:message> 2132
 <wsdl:message name="getStandardVersionResponse"> 2133
 <wsdl:part name="getStandardVersionReturn" 2134
element="impl:GetStandardVersionResult"/> 2135
 </wsdl:message> 2136
 2137
 2138
 <wsdl:message name="getVendorVersionRequest"> 2139
 <wsdl:part name="parms" element="impl:GetVendorVersion"/> 2140
 </wsdl:message> 2141
 <wsdl:message name="getVendorVersionResponse"> 2142
 <wsdl:part name="getVendorVersionReturn" element="impl:GetVendorVersionResult"/> 2143
 </wsdl:message> 2144
 2145
 <!-- ALESERVICE FAULT EXCEPTIONS --> 2146
 <wsdl:message name="DuplicateNameExceptionResponse"> 2147
 <wsdl:part name="fault" element="impl:DuplicateNameException"/> 2148
 </wsdl:message> 2149
 <wsdl:message name="ECSpecValidationExceptionResponse"> 2150
 <wsdl:part name="fault" element="impl:ECSpecValidationException"/> 2151
 </wsdl:message> 2152
 <wsdl:message name="InvalidURIExceptionResponse"> 2153
 <wsdl:part name="fault" element="impl:InvalidURIException"/> 2154

http://www.epcglobalinc.org

Copyright © 2005, 2004 EPCglobal Inc™, All Rights Reserved. Page 55 of 71

 </wsdl:message> 2155
 <wsdl:message name="NoSuchNameExceptionResponse"> 2156
 <wsdl:part name="fault" element="impl:NoSuchNameException"/> 2157
 </wsdl:message> 2158
 <wsdl:message name="NoSuchSubscriberExceptionResponse"> 2159
 <wsdl:part name="fault" element="impl:NoSuchSubscriberException"/> 2160
 </wsdl:message> 2161
 <wsdl:message name="DuplicateSubscriptionExceptionResponse"> 2162
 <wsdl:part name="fault" element="impl:DuplicateSubscriptionException"/> 2163
 </wsdl:message> 2164
 <wsdl:message name="ImplementationExceptionResponse"> 2165
 <wsdl:part name="fault" element="impl:ImplementationException"/> 2166
 </wsdl:message> 2167
 <wsdl:message name="SecurityExceptionResponse"> 2168
 <wsdl:part name="fault" element="impl:SecurityException"/> 2169
 </wsdl:message> 2170
 2171
 <!-- ALESERVICE PORTTYPE --> 2172
 <wsdl:portType name="ALEServicePortType"> 2173
 <wsdl:operation name="define"> 2174
 <wsdl:input message="impl:defineRequest" name="defineRequest"/> 2175
 <wsdl:output message="impl:defineResponse" name="defineResponse"/> 2176
 <wsdl:fault message="impl:DuplicateNameExceptionResponse" 2177
 name="DuplicateNameExceptionFault"/> 2178
 <wsdl:fault message="impl:ECSpecValidationExceptionResponse" 2179
 name="ECSpecValidationExceptionFault"/> 2180
 <wsdl:fault message="impl:SecurityExceptionResponse" 2181
 name="SecurityExceptionFault"/> 2182
 <wsdl:fault message="impl:ImplementationExceptionResponse" 2183
 name="ImplementationExceptionFault"/> 2184
 </wsdl:operation> 2185
 2186
 <wsdl:operation name="undefine"> 2187
 <wsdl:input message="impl:undefineRequest" name="undefineRequest"/> 2188
 <wsdl:output message="impl:undefineResponse" name="undefineResponse"/> 2189
 <wsdl:fault message="impl:NoSuchNameExceptionResponse" 2190
 name="NoSuchNameExceptionFault"/> 2191
 <wsdl:fault message="impl:SecurityExceptionResponse" 2192
 name="SecurityExceptionFault"/> 2193
 <wsdl:fault message="impl:ImplementationExceptionResponse" 2194
 name="ImplementationExceptionFault"/> 2195
 </wsdl:operation> 2196
 2197
 <wsdl:operation name="getECSpec"> 2198
 <wsdl:input message="impl:getECSpecRequest" name="getECSpecRequest"/> 2199
 <wsdl:output message="impl:getECSpecResponse" name="getECSpecResponse"/> 2200
 <wsdl:fault message="impl:NoSuchNameExceptionResponse" 2201
 name="NoSuchNameExceptionFault"/> 2202
 <wsdl:fault message="impl:SecurityExceptionResponse" 2203
 name="SecurityExceptionFault"/> 2204
 <wsdl:fault message="impl:ImplementationExceptionResponse" 2205
 name="ImplementationExceptionFault"/> 2206
 </wsdl:operation> 2207
 2208
 <wsdl:operation name="getECSpecNames"> 2209
 <wsdl:input message="impl:getECSpecNamesRequest" 2210
 name="getECSpecNamesRequest"/> 2211
 <wsdl:output message="impl:getECSpecNamesResponse" 2212
 name="getECSpecNamesResponse"/> 2213
 <wsdl:fault message="impl:SecurityExceptionResponse" 2214
 name="SecurityExceptionFault"/> 2215
 <wsdl:fault message="impl:ImplementationExceptionResponse" 2216
 name="ImplementationExceptionFault"/> 2217
 </wsdl:operation> 2218
 2219
 <wsdl:operation name="subscribe"> 2220
 <wsdl:input message="impl:subscribeRequest" name="subscribeRequest"/> 2221
 <wsdl:output message="impl:subscribeResponse" name="subscribeResponse"/> 2222
 <wsdl:fault message="impl:NoSuchNameExceptionResponse" 2223
 name="NoSuchNameExceptionFault"/> 2224

http://www.epcglobalinc.org

Copyright © 2005, 2004 EPCglobal Inc™, All Rights Reserved. Page 56 of 71

 <wsdl:fault message="impl:InvalidURIExceptionResponse" 2225
 name="InvalidURIExceptionFault"/> 2226
 <wsdl:fault message="impl:DuplicateSubscriptionExceptionResponse" 2227
 name="DuplicateSubscriptionExceptionFault"/> 2228
 <wsdl:fault message="impl:SecurityExceptionResponse" 2229
 name="SecurityExceptionFault"/> 2230
 <wsdl:fault message="impl:ImplementationExceptionResponse" 2231
 name="ImplementationExceptionFault"/> 2232
 </wsdl:operation> 2233
 2234
 <wsdl:operation name="unsubscribe"> 2235
 <wsdl:input message="impl:unsubscribeRequest" name="unsubscribeRequest"/> 2236
 <wsdl:output message="impl:unsubscribeResponse" name="unsubscribeResponse"/> 2237
 <wsdl:fault message="impl:NoSuchNameExceptionResponse" 2238
 name="NoSuchNameExceptionFault"/> 2239
 <wsdl:fault message="impl:NoSuchSubscriberExceptionResponse" 2240
 name="NoSuchSubscriberExceptionFault"/> 2241
 <wsdl:fault message="impl:InvalidURIExceptionResponse" 2242
 name="InvalidURIExceptionFault"/> 2243
 <wsdl:fault message="impl:SecurityExceptionResponse" 2244
 name="SecurityExceptionFault"/> 2245
 <wsdl:fault message="impl:ImplementationExceptionResponse" 2246
 name="ImplementationExceptionFault"/> 2247
 </wsdl:operation> 2248
 2249
 <wsdl:operation name="poll"> 2250
 <wsdl:input message="impl:pollRequest" name="pollRequest"/> 2251
 <wsdl:output message="impl:pollResponse" name="pollResponse"/> 2252
 <wsdl:fault message="impl:NoSuchNameExceptionResponse" 2253
 name="NoSuchNameExceptionFault"/> 2254
 <wsdl:fault message="impl:SecurityExceptionResponse" 2255
 name="SecurityExceptionFault"/> 2256
 <wsdl:fault message="impl:ImplementationExceptionResponse" 2257
 name="ImplementationExceptionFault"/> 2258
 </wsdl:operation> 2259
 2260
 <wsdl:operation name="immediate"> 2261
 <wsdl:input message="impl:immediateRequest" name="immediateRequest"/> 2262
 <wsdl:output message="impl:immediateResponse" name="immediateResponse"/> 2263
 <wsdl:fault message="impl:ECSpecValidationExceptionResponse" 2264
 name="ECSpecValidationExceptionFault"/> 2265
 <wsdl:fault message="impl:SecurityExceptionResponse" 2266
 name="SecurityExceptionFault"/> 2267
 <wsdl:fault message="impl:ImplementationExceptionResponse" 2268
 name="ImplementationExceptionFault"/> 2269
 </wsdl:operation> 2270
 2271
 <wsdl:operation name="getSubscribers"> 2272
 <wsdl:input message="impl:getSubscribersRequest" 2273
 name="getSubscribersRequest"/> 2274
 <wsdl:output message="impl:getSubscribersResponse" 2275
 name="getSubscribersResponse"/> 2276
 <wsdl:fault message="impl:NoSuchNameExceptionResponse" 2277
 name="NoSuchNameExceptionFault"/> 2278
 <wsdl:fault message="impl:SecurityExceptionResponse" 2279
 name="SecurityExceptionFault"/> 2280
 <wsdl:fault message="impl:ImplementationExceptionResponse" 2281
 name="ImplementationExceptionFault"/> 2282
 </wsdl:operation> 2283
 2284
 <wsdl:operation name="getStandardVersion"> 2285
 <wsdl:input message="impl:getStandardVersionRequest" 2286
name="getStandardVersionRequest"/> 2287
 <wsdl:output message="impl:getStandardVersionResponse" 2288
name="getStandardVersionResponse"/> 2289
 <wsdl:fault message="impl:ImplementationExceptionResponse" 2290
name="ImplementationExceptionFault"/> 2291
 </wsdl:operation> 2292
 2293
 <wsdl:operation name="getVendorVersion"> 2294

http://www.epcglobalinc.org

Copyright © 2005, 2004 EPCglobal Inc™, All Rights Reserved. Page 57 of 71

 <wsdl:input message="impl:getVendorVersionRequest" 2295
name="getVendorVersionRequest"/> 2296
 <wsdl:output message="impl:getVendorVersionResponse" 2297
name="getVendorVersionResponse"/> 2298
 <wsdl:fault message="impl:ImplementationExceptionResponse" 2299
name="ImplementationExceptionFault"/> 2300
 </wsdl:operation> </wsdl:portType> 2301
 2302
 <!-- ALESERVICE BINDING --> 2303
 <wsdl:binding name="ALEServiceBinding" type="impl:ALEServicePortType"> 2304
 <wsdlsoap:binding style="document" 2305
 transport="http://schemas.xmlsoap.org/soap/http"/> 2306
 <wsdl:operation name="define"> 2307
 <wsdlsoap:operation soapAction=""/> 2308
 <wsdl:input name="defineRequest"> 2309
 <wsdlsoap:body 2310
 use="literal"/> 2311
 </wsdl:input> 2312
 <wsdl:output name="defineResponse"> 2313
 <wsdlsoap:body 2314
 use="literal"/> 2315
 </wsdl:output> 2316
 <wsdl:fault name="DuplicateNameExceptionFault"> 2317
 <wsdlsoap:fault 2318
 name="DuplicateNameExceptionFault" 2319
 use="literal"/> 2320
 </wsdl:fault> 2321
 <wsdl:fault name="ECSpecValidationExceptionFault"> 2322
 <wsdlsoap:fault 2323
 name="ECSpecValidationExceptionFault" 2324
 use="literal"/> 2325
 </wsdl:fault> 2326
 <wsdl:fault name="SecurityExceptionFault"> 2327
 <wsdlsoap:fault 2328
 name="SecurityExceptionFault" 2329
 use="literal"/> 2330
 </wsdl:fault> 2331
 <wsdl:fault name="ImplementationExceptionFault"> 2332
 <wsdlsoap:fault 2333
 name="ImplementationExceptionFault" 2334
 use="literal"/> 2335
 </wsdl:fault> 2336
 </wsdl:operation> 2337
 2338
 <wsdl:operation name="undefine"> 2339
 <wsdlsoap:operation soapAction=""/> 2340
 <wsdl:input name="undefineRequest"> 2341
 <wsdlsoap:body 2342
 use="literal"/> 2343
 </wsdl:input> 2344
 <wsdl:output name="undefineResponse"> 2345
 <wsdlsoap:body 2346
 use="literal"/> 2347
 </wsdl:output> 2348
 <wsdl:fault name="NoSuchNameExceptionFault"> 2349
 <wsdlsoap:fault 2350
 name="NoSuchNameExceptionFault" 2351
 use="literal"/> 2352
 </wsdl:fault> 2353
 <wsdl:fault name="SecurityExceptionFault"> 2354
 <wsdlsoap:fault 2355
 name="SecurityExceptionFault" 2356
 use="literal"/> 2357
 </wsdl:fault> 2358
 <wsdl:fault name="ImplementationExceptionFault"> 2359
 <wsdlsoap:fault 2360
 name="ImplementationExceptionFault" 2361
 use="literal"/> 2362
 </wsdl:fault> 2363
 </wsdl:operation> 2364

http://www.epcglobalinc.org

Copyright © 2005, 2004 EPCglobal Inc™, All Rights Reserved. Page 58 of 71

 2365
 <wsdl:operation name="getECSpec"> 2366
 <wsdlsoap:operation soapAction=""/> 2367
 <wsdl:input name="getECSpecRequest"> 2368
 <wsdlsoap:body 2369
 use="literal"/> 2370
 </wsdl:input> 2371
 <wsdl:output name="getECSpecResponse"> 2372
 <wsdlsoap:body 2373
 use="literal"/> 2374
 </wsdl:output> 2375
 <wsdl:fault name="NoSuchNameExceptionFault"> 2376
 <wsdlsoap:fault 2377
 name="NoSuchNameExceptionFault" 2378
 use="literal"/> 2379
 </wsdl:fault> 2380
 <wsdl:fault name="SecurityExceptionFault"> 2381
 <wsdlsoap:fault 2382
 name="SecurityExceptionFault" 2383
 use="literal"/> 2384
 </wsdl:fault> 2385
 <wsdl:fault name="ImplementationExceptionFault"> 2386
 <wsdlsoap:fault 2387
 name="ImplementationExceptionFault" 2388
 use="literal"/> 2389
 </wsdl:fault> 2390
 </wsdl:operation> 2391
 2392
 <wsdl:operation name="getECSpecNames"> 2393
 <wsdlsoap:operation soapAction=""/> 2394
 <wsdl:input name="getECSpecNamesRequest"> 2395
 <wsdlsoap:body 2396
 use="literal"/> 2397
 </wsdl:input> 2398
 <wsdl:output name="getECSpecNamesResponse"> 2399
 <wsdlsoap:body 2400
 use="literal"/> 2401
 </wsdl:output> 2402
 <wsdl:fault name="SecurityExceptionFault"> 2403
 <wsdlsoap:fault 2404
 name="SecurityExceptionFault" 2405
 use="literal"/> 2406
 </wsdl:fault> 2407
 <wsdl:fault name="ImplementationExceptionFault"> 2408
 <wsdlsoap:fault 2409
 name="ImplementationExceptionFault" 2410
 use="literal"/> 2411
 </wsdl:fault> 2412
 </wsdl:operation> 2413
 2414
 <wsdl:operation name="subscribe"> 2415
 <wsdlsoap:operation soapAction=""/> 2416
 <wsdl:input name="subscribeRequest"> 2417
 <wsdlsoap:body 2418
 use="literal"/> 2419
 </wsdl:input> 2420
 <wsdl:output name="subscribeResponse"> 2421
 <wsdlsoap:body 2422
 use="literal"/> 2423
 </wsdl:output> 2424
 <wsdl:fault name="NoSuchNameExceptionFault"> 2425
 <wsdlsoap:fault 2426
 name="NoSuchNameExceptionFault" 2427
 use="literal"/> 2428
 </wsdl:fault> 2429
 <wsdl:fault name="InvalidURIExceptionFault"> 2430
 <wsdlsoap:fault 2431
 name="InvalidURIExceptionFault" 2432
 use="literal"/> 2433
 </wsdl:fault> 2434

http://www.epcglobalinc.org

Copyright © 2005, 2004 EPCglobal Inc™, All Rights Reserved. Page 59 of 71

 <wsdl:fault name="DuplicateSubscriptionExceptionFault"> 2435
 <wsdlsoap:fault 2436
 name="DuplicateSubscriptionExceptionFault" 2437
 use="literal"/> 2438
 </wsdl:fault> 2439
 <wsdl:fault name="SecurityExceptionFault"> 2440
 <wsdlsoap:fault 2441
 name="SecurityExceptionFault" 2442
 use="literal"/> 2443
 </wsdl:fault> 2444
 <wsdl:fault name="ImplementationExceptionFault"> 2445
 <wsdlsoap:fault 2446
 name="ImplementationExceptionFault" 2447
 use="literal"/> 2448
 </wsdl:fault> 2449
 </wsdl:operation> 2450
 2451
 <wsdl:operation name="unsubscribe"> 2452
 <wsdlsoap:operation soapAction=""/> 2453
 <wsdl:input name="unsubscribeRequest"> 2454
 <wsdlsoap:body 2455
 use="literal"/> 2456
 </wsdl:input> 2457
 <wsdl:output name="unsubscribeResponse"> 2458
 <wsdlsoap:body 2459
 use="literal"/> 2460
 </wsdl:output> 2461
 <wsdl:fault name="NoSuchNameExceptionFault"> 2462
 <wsdlsoap:fault 2463
 name="NoSuchNameExceptionFault" 2464
 use="literal"/> 2465
 </wsdl:fault> 2466
 <wsdl:fault name="NoSuchSubscriberExceptionFault"> 2467
 <wsdlsoap:fault 2468
 name="NoSuchSubscriberExceptionFault" 2469
 use="literal"/> 2470
 </wsdl:fault> 2471
 <wsdl:fault name="InvalidURIExceptionFault"> 2472
 <wsdlsoap:fault 2473
 name="InvalidURIExceptionFault" 2474
 use="literal"/> 2475
 </wsdl:fault> 2476
 <wsdl:fault name="SecurityExceptionFault"> 2477
 <wsdlsoap:fault 2478
 name="SecurityExceptionFault" 2479
 use="literal"/> 2480
 </wsdl:fault> 2481
 <wsdl:fault name="ImplementationExceptionFault"> 2482
 <wsdlsoap:fault 2483
 name="ImplementationExceptionFault" 2484
 use="literal"/> 2485
 </wsdl:fault> 2486
 </wsdl:operation> 2487
 2488
 <wsdl:operation name="poll"> 2489
 <wsdlsoap:operation soapAction=""/> 2490
 <wsdl:input name="pollRequest"> 2491
 <wsdlsoap:body 2492
 use="literal"/> 2493
 </wsdl:input> 2494
 <wsdl:output name="pollResponse"> 2495
 <wsdlsoap:body 2496
 use="literal"/> 2497
 </wsdl:output> 2498
 <wsdl:fault name="NoSuchNameExceptionFault"> 2499
 <wsdlsoap:fault 2500
 name="NoSuchNameExceptionFault" 2501
 use="literal"/> 2502
 </wsdl:fault> 2503
 <wsdl:fault name="SecurityExceptionFault"> 2504

http://www.epcglobalinc.org

Copyright © 2005, 2004 EPCglobal Inc™, All Rights Reserved. Page 60 of 71

 <wsdlsoap:fault 2505
 name="SecurityExceptionFault" 2506
 use="literal"/> 2507
 </wsdl:fault> 2508
 <wsdl:fault name="ImplementationExceptionFault"> 2509
 <wsdlsoap:fault 2510
 name="ImplementationExceptionFault" 2511
 use="literal"/> 2512
 </wsdl:fault> 2513
 </wsdl:operation> 2514
 2515
 <wsdl:operation name="immediate"> 2516
 <wsdlsoap:operation soapAction=""/> 2517
 <wsdl:input name="immediateRequest"> 2518
 <wsdlsoap:body 2519
 use="literal"/> 2520
 </wsdl:input> 2521
 <wsdl:output name="immediateResponse"> 2522
 <wsdlsoap:body 2523
 use="literal"/> 2524
 </wsdl:output> 2525
 <wsdl:fault name="ECSpecValidationExceptionFault"> 2526
 <wsdlsoap:fault 2527
 name="ECSpecValidationExceptionFault" 2528
 use="literal"/> 2529
 </wsdl:fault> 2530
 <wsdl:fault name="SecurityExceptionFault"> 2531
 <wsdlsoap:fault 2532
 name="SecurityExceptionFault" 2533
 use="literal"/> 2534
 </wsdl:fault> 2535
 <wsdl:fault name="ImplementationExceptionFault"> 2536
 <wsdlsoap:fault 2537
 name="ImplementationExceptionFault" 2538
 use="literal"/> 2539
 </wsdl:fault> 2540
 </wsdl:operation> 2541
 2542
 <wsdl:operation name="getSubscribers"> 2543
 <wsdlsoap:operation soapAction=""/> 2544
 <wsdl:input name="getSubscribersRequest"> 2545
 <wsdlsoap:body 2546
 use="literal"/> 2547
 </wsdl:input> 2548
 <wsdl:output name="getSubscribersResponse"> 2549
 <wsdlsoap:body 2550
 use="literal"/> 2551
 </wsdl:output> 2552
 <wsdl:fault name="NoSuchNameExceptionFault"> 2553
 <wsdlsoap:fault 2554
 name="NoSuchNameExceptionFault" 2555
 use="literal"/> 2556
 </wsdl:fault> 2557
 <wsdl:fault name="SecurityExceptionFault"> 2558
 <wsdlsoap:fault 2559
 name="SecurityExceptionFault" 2560
 use="literal"/> 2561
 </wsdl:fault> 2562
 <wsdl:fault name="ImplementationExceptionFault"> 2563
 <wsdlsoap:fault 2564
 name="ImplementationExceptionFault" 2565
 use="literal"/> 2566
 </wsdl:fault> 2567
 </wsdl:operation> 2568
 2569
 <wsdl:operation name="getStandardVersion"> 2570
 <wsdlsoap:operation soapAction=""/> 2571
 <wsdl:input name="getStandardVersionRequest"> 2572
 <wsdlsoap:body 2573
 use="literal"/> 2574

http://www.epcglobalinc.org

Copyright © 2005, 2004 EPCglobal Inc™, All Rights Reserved. Page 61 of 71

 </wsdl:input> 2575
 <wsdl:output name="getStandardVersionResponse"> 2576
 <wsdlsoap:body 2577
 use="literal"/> 2578
 </wsdl:output> 2579
 <wsdl:fault name="ImplementationExceptionFault"> 2580
 <wsdlsoap:fault 2581
 name="ImplementationExceptionFault" 2582
 use="literal"/> 2583
 </wsdl:fault> 2584
 </wsdl:operation> 2585
 2586
 <wsdl:operation name="getVendorVersion"> 2587
 <wsdlsoap:operation soapAction=""/> 2588
 <wsdl:input name="getVendorVersionRequest"> 2589
 <wsdlsoap:body 2590
 use="literal"/> 2591
 </wsdl:input> 2592
 <wsdl:output name="getVendorVersionResponse"> 2593
 <wsdlsoap:body 2594
 use="literal"/> 2595
 </wsdl:output> 2596
 <wsdl:fault name="ImplementationExceptionFault"> 2597
 <wsdlsoap:fault 2598
 name="ImplementationExceptionFault" 2599
 use="literal"/> 2600
 </wsdl:fault> 2601
 </wsdl:operation> 2602
 </wsdl:binding> 2603
 2604
 <!-- ALESERVICE --> 2605
 <wsdl:service name="ALEService"> 2606
 <wsdl:port binding="impl:ALEServiceBinding" name="ALEServicePort"> 2607
 <!-- The value of the location attribute below is an example only; 2608
 Implementations are free to choose any appropriate URL. --> 2609
 <wsdlsoap:address 2610
 location="http://localhost:6060/axis/services/ALEService"/> 2611
 </wsdl:port> 2612
 </wsdl:service> 2613
 2614
</wsdl:definitions> 2615

12 Use Cases (non-normative) 2616
This section provides a non-normative illustration of how the ALE interface is used in 2617
various application scenarios. 2618

1. For shipment and receipt verification, applications will request the number of 2619
Logistic Units such as Pallets and Cases moving through a portal, totaled by Pallet 2620
and Case GTIN across all serial numbers. Object types other than Pallet and Case 2621
should be filtered out of the reading. 2622

2. For retail OOS management, applications will request one of 2 things: 2623
a. The number of Items that were added to or removed from the shelf since the 2624

last read cycle, totaled by Item GTIN across all serial numbers. Object types 2625
other than Item should be filtered out of the reading; or 2626

b. The total number of Items on the shelf during the current read cycle, totaled 2627
by GTIN across all serial numbers. Object types other than Item should be 2628
filtered out of the reading. 2629

3. For retail checkout, applications will request the full EPC of Items that move 2630
through the checkout zone. Object types other than Item should be filtered out. In 2631
order to prevent charging for Items that aren’t for sale (e.g., Items the consumer or 2632

http://www.epcglobalinc.org

Copyright © 2005, 2004 EPCglobal Inc™, All Rights Reserved. Page 62 of 71

checkout clerk brought into the store that inadvertently happen to be read), something 2633
in the architecture needs to make sure such Items are not read or filter them out. 2634
Prevention might be achievable with proper portal design and the ability for the 2635
checkout clerk to override errant reads. Alternatively, the ALE implementation could 2636
filter errant reads via access to a list of Items (down to the serial number) that are 2637
qualified for sale in that store (this could be hundreds of thousands to millions of 2638
items), or the POS application itself could do it. With the list options, the requesting 2639
application would be responsible for maintaining the list. 2640

4. For retail front door theft detection, applications will request the full EPC of any 2641
Item that passes through the security point portal and that has not be marked as sold 2642
by the store and perhaps that meet certain theft detection criteria established by the 2643
store, such as item value. Like the retail checkout use case, the assumption is that the 2644
ALE implementation will have access to a list of store Items (to the serial number 2645
level) that have not been sold and that meet the stores theft alert conditions. The 2646
requesting application will be responsible for maintaining the list, and will decide 2647
what action, if any, should be taken based on variables such as the value and quantity 2648
of Items reported. 2649

5. For retail shelf theft detection, applications will request the number of Items that 2650
were removed from the shelf since the last read cycle, totaled by Item GTIN across all 2651
serial numbers. Object types other than Item should be filtered out. 2652

6. For warehouse management, a relatively complex range of operations and thus 2653
requirements will exist. For illustration at this stage, one of the requirements is that 2654
the application will request the EPC of the slot location into which a forklift operator 2655
has placed a Pallet of products. Object types other than “slot” should be filtered out 2656
of the reading. 2657

 2658

The table below summarizes the ALE API settings used in each of these use cases. 2659
Report Settings Use Case Event Cycle

Boundaries Result
Set R

Filter F(R) Report Type

1 (ship/rcpt) Triggered by
pallet entering
and leaving
portal

Complete Pallet &
Case

Group cardinality,
G = pallet/case GTIN

2a (retail OOS) Periodic Additions
&
Deletions

Item Group cardinality,
G = item GTIN

2b (retail OOS) Periodic Complete Item Group cardinality,
G = item GTIN

3 (retail ckout) Single Complete Item Membership (EPC)

http://www.epcglobalinc.org

Copyright © 2005, 2004 EPCglobal Inc™, All Rights Reserved. Page 63 of 71

Report Settings Use Case Event Cycle
Boundaries Result

Set R
Filter F(R) Report Type

4 (door theft) Triggered by
object(s)
entering and
leaving portal

Complete None Membership (EPC)

5 (shelf theft) Periodic Deletions Item Group cardinality,
G = item GTIN

6 (forklift) Single Complete Slot Membership (EPC)

 2660

13 ALE Scenarios (non-normative) 2661
This section provides a non-normative illustration of the API-level interactions between 2662
the ALE interface and the ALE client and other actors. 2663

13.1 ALE Context 2664
The ALE layer exists in a context including RFID readers, Users (administrative) and 2665
Client applications as shown below. Initially the administrators are responsible for 2666
installing and configuring the RFID environment. Once the environment is configured, 2667
EPC data (tag reads) are sent from the Readers to the ALE layer. In some cases the ALE 2668
layer may be implemented on the Reader or elsewhere, but in these scenarios we assume 2669
that the ALE layer is implemented as a distinct software component and is configured to 2670
support more than one Reader. 2671

 2672

http://www.epcglobalinc.org

Copyright © 2005, 2004 EPCglobal Inc™, All Rights Reserved. Page 64 of 71

 2673
The ALE clients are applications or services that process EPC tag information. Several 2674
methods are defined within the ALE interface which allow clients to specify the data they 2675
wish to receive and the conditions for the production of the reports containing the data. 2676
These methods are: 2677

• define, undefine 2678

• subscribe, unsubscribe 2679

• poll 2680

• immediate 2681

• getECSpecNames, getECSpec 2682

These methods are defined normatively in Section 8.1. 2683

13.2 Scenarios 2684
A few sample scenarios are illustrated below to demonstrate the use of the ALE interface 2685
messages. Below is a representative list of the kinds of scenarios ALE supports. 2686

1. Defining Subscribe ECName, ECSpec 2687
a. Direct Subscription. Defined by A, Report to: A 2688
b. Indirect Subscription Defined by A, Report to: B 2689

2. Poll(ECName) 2690

http://www.epcglobalinc.org

Copyright © 2005, 2004 EPCglobal Inc™, All Rights Reserved. Page 65 of 71

3. Immediate(ECSpec) 2691
4. Operation Errors 2692
5. System Errors 2693

13.2.1 Scenario 1a: Direct Subscription 2694
The scenario shown below involves a client application specifying the EPC data it is 2695
interested in collecting. After specifying the ECSpec, it then subscribes to receive the 2696
resulting ECReports. The ECSpec shown in this scenario specifies that event cycles 2697
should repeat periodically. The ECReportSpec requests reports for additions and 2698
deletions, and reportIfEmpty is set to false. This is a normal scenario involving no 2699
errors. 2700

 2701

13.2.1.1 Assumptions 2702
1. All discovery, configuration, and initialization required has already been 2703

performed. 2704
2. The ALE layer is implemented as a distinct software component. 2705
3. ECSpec boundary condition specified using: repeatPeriod 2706
4. ECFilterSpec includePatterns includes the EPC(s) illustrated in 2707

this scenario 2708
5. Client 1 is the only client of ALE and the only subscriber of the ECSpec 2709

http://www.epcglobalinc.org

Copyright © 2005, 2004 EPCglobal Inc™, All Rights Reserved. Page 66 of 71

13.2.1.2 Description 2710
1. The client calls the define method of the ALE interface. The ECSpec 2711

specifies that the event cycle is to begin using repeatPeriod as the 2712
boundary specification and to end using duration as the boundary 2713
specification (but any valid boundary conditions could be specified). The 2714
ECReportSpec and ECFilterSpec contained within the ECSpec are 2715
defined to include the EPC data sent later in step 3. 2716

2. The client calls the subscribe method of the ALE interface, including a 2717
URI that identifies the client itself as the destination for the ECReports. At 2718
this point the ECSpec is considered “Requested.” Since the start condition is 2719
given by repeatPeriod, the ECSpec immediately transitions to the 2720
“Active” state. 2721

3. During period1 no new tags (additions) were reported by the Reader, and no 2722
deletions were noted, thus no ECReports is generated. 2723

4. In period2, an EPC that does meet the filter conditions specified in the 2724
ECSpec is reported to the ALE layer by one of the Readers indicated in the 2725
ECSpec. 2726

5. At the end of period2, the requested ECReports is generated and sent to the 2727
client. 2728

6. In period3, no EPCs are reported, and no ECReports are generated. 2729
7. In period4 the client calls the unsubscribe method of the ALE interface. 2730

As this client is the only subscriber, the ECSpec transitions to the 2731
“Unrequested” state, and no further ECReports are generated. 2732

8. Because the ECSpec is Unrequested, the client can undefine the ECSpec 2733
without any error. 2734

13.2.2 Scenario 1b: Indirect Subscription 2735
The scenario shown below involves a client application specifying the EPC data that is of 2736
interest to another observer. After specifying the ECSpec, the client subscribes a third 2737
party observer to receive the resulting ECReports. The ECSpec shown in this 2738
scenario specifies the event cycle to start and stop using a trigger mechanism. This is a 2739
normal scenario involving no errors. 2740

http://www.epcglobalinc.org

Copyright © 2005, 2004 EPCglobal Inc™, All Rights Reserved. Page 67 of 71

 2741

13.2.2.1 Assumptions 2742
1. All discovery, configuration, and initialization required has already been 2743

performed. 2744
2. The ALE layer is implemented as a distinct software component. 2745
3. ECSpec boundary conditions specified using startTrigger, stopTrigger 2746
4. ECFilterSpec includePatterns includes the EPC(s) illustrated in 2747

this scenario 2748

13.2.2.2 Description 2749
1. The ALE client calls the define methods of the ALE interface. The 2750

ECSpec contains a valid startTrigger and stopTrigger as boundary 2751
specifications – though any valid boundary conditions could be specified. The 2752
ECReportSpec and ECFilterSpec contained within the ECSpec is 2753
defined to include the EPC data sent later in step 4. 2754

2. The ALE client calls the subscribe method of the ALE interface which 2755
includes the URI of the intended observer. At this point the ECSpec is 2756
considered “Requested.” 2757

3. After the start trigger is received, the ECSpec is considered “Active.” 2758
Subsequent EPCs that meet the filter conditions in the ECSpec will be 2759
collected by the ALE layer. 2760

4. An EPC that does meet the filter conditions in the ECSpec is reported to the 2761
ALE layer. 2762

http://www.epcglobalinc.org

Copyright © 2005, 2004 EPCglobal Inc™, All Rights Reserved. Page 68 of 71

5. The stop trigger is received. The ECSpec transitions to the “Requested” 2763
state. 2764

6. The ECReports is generated and sent asynchronously to the observer. 2765

13.2.3 Scenario 2, 3: Poll, Immediate 2766
The scenario shown illustrates an ALE client using the poll method of the ALE 2767
interface to synchronously obtain the EPC data it is interested in collecting. The 2768
ECSpec shown in this scenario specifies the event cycle boundary to be a duration of 2769
time. Later in the scenario the ALE client uses the immediate method of the ALE 2770
interface, again synchronously obtaining EPC data. The combination of poll and 2771
immediate is not required, and only serves to illustrate a possibility. This is a normal 2772
scenario involving no errors. 2773

 2774

13.2.3.1 Assumptions 2775
1. All discovery, configuration, and initialization required has already been 2776

performed. 2777
2. The ALE layer is implemented as a distinct software component. 2778
3. ECSpec boundary condition is specified as duration. 2779

http://www.epcglobalinc.org

Copyright © 2005, 2004 EPCglobal Inc™, All Rights Reserved. Page 69 of 71

4. ECFilterSpec includePatterns includes the EPC(s) illustrated in 2780
this scenario. 2781

13.2.3.2 Description 2782
1. The ALE client calls the define method of the ALE interface. The 2783

ECSpec contains a valid duration as the boundary specification – though 2784
any valid boundary conditions could be specified. The ECReportSpec and 2785
ECFilterSpec contained within the ECSpec are defined to include the 2786
EPC data sent later in steps 3 and 4. At this point the ECSpec is considered 2787
“Unrequested.” 2788

2. The ALE client calls the poll method of the ALE interface, naming the 2789
ECSpec previously defined in Step 1. At this point the ECSpec is 2790
transitioned to the “Active” state, and the event cycle begins for the duration 2791
specified in the ECSpec. During the duration of the event cycle the ALE 2792
client is blocked waiting for a response to the poll method. 2793

3. An EPC which meets the filter conditions of the ECSpec is received during 2794
the event cycle. At the end of the event cycle, the ECReports is generated 2795
and returned to the ALE client as the response to the poll method. At this 2796
point the ECSpec transitions to the “Unrequested” state. 2797

4. An EPC that meets the filter conditions of the ECSpec is reported to the ALE 2798
layer, but since there is no “Active” ECSpec, this EPC will not be reported. 2799

5. The ALE client invokes the poll method of the ALE interface a second time. 2800
This is similar to the process described above in Steps 2 and 3, but since no 2801
EPC is received, no EPC data is returned in the ECReports. 2802

6. Later, the ALE client calls the immediate method of the ALE interface. 2803
This is very similar to the use of poll, except that when the client calls 2804
immediate it provides the ECSpec as part of the method call, as opposed 2805
to referring to a previously defined ECSpec. Since a new ECSpec is 2806
provided with the immediate method, it can contain any valid combination 2807
of parameters and report options. 2808
 2809

14 Glossary (non-normative) 2810
This section provides a non-normative summary of terms used within this specification. 2811
For normative definitions of these terms, please consult the relevant sections of the 2812
document. 2813

Term Section Meaning

ALE
(Application
Level Events)
Interface

1 Software interface through which ALE Clients may obtain
filtered, consolidated EPC data from a variety of sources.

http://www.epcglobalinc.org

Copyright © 2005, 2004 EPCglobal Inc™, All Rights Reserved. Page 70 of 71

Term Section Meaning

ALE
(Application
Level Events)
Layer

2 Functionality that sits between raw EPC detection events
(RFID tag reads or otherwise) and application business logic
(an ALE Client). The ALE Interface is the interface between
this layer and the ALE Client.

ALE Client 2 Software, typically application business logic, which obtains
EPC data through the ALE Interface.

Event Cycle 3 One or more Read Cycles, from one or more Readers, that are
to be treated as a unit from a client perspective. It is the
smallest unit of interaction between the ALE Interface and an
ALE Client.

Read Cycle 3 The smallest unit of interaction of the ALE Layer with a
Reader.

Reader 3 A source of raw EPC data events. Often an RFID reader, but
may also be EPC-compatible bar code reader, or even a person
typing on a keyboard.

Report 3 Data about event cycle communicated from the ALE interface
to an ALE Client.

Immediate
Request

2 A request in which information is reported on a one-time basis
at the time of request. Immediate requests are made using the
immediate or poll methods of the ALE Interface.

Recurring
Request

2 A request in which information is reported repeatedly
whenever an event is detected or at a specified time interval.
Recurring requests are made using the subscribe method of
the ALE Interface.

Grouping
Operator

5 A function that maps an EPC code into a group code. Specifies
how EPCs read within an Event Cycle are to be partitioned into
groups for reporting purposes.

Physical
Reader

7 A physical device, such as an RFID reader or bar code scanner,
that acts as one or more Readers for the purposes of the ALE
Layer.

Logical
Reader Name

7 An abstract name that an ALE Client uses to refer to one or
more Readers that have a single logical purpose; e.g.,
DockDoor42.

 2814

15 References 2815
[ISODir2] ISO, “Rules for the structure and drafting of International Standards 2816
(ISO/IEC Directives, Part 2, 2001, 4th edition),” July 2002. 2817

http://www.epcglobalinc.org

Copyright © 2005, 2004 EPCglobal Inc™, All Rights Reserved. Page 71 of 71

[RFC1738] T. Berners-Lee, L. Masinter, M. McCahill, “Uniform Resource Locators 2818
(URL),” RFC 1738, December 1994, http://www.ietf.org/rfc/rfc1738. 2819

[RFC2396] T. Berners-Lee, R. Fielding, L. Masinter, “Uniform Resource Identifiers 2820
(URI): Generic Syntax,” RFC2396, August 1998, http://www.ietf.org/rfc/rfc2396. 2821

[RFC2616] R. Fielding, J. Gettys, J. Mogul, H. Frystyk, L. Masinter, P. Leach, T. 2822
Berners-Lee, “Hypertext Transfer Protocol -- HTTP/1.1,” RFC2616, June 1999, 2823
http://www.ietf.org/rfc/rfc2616. 2824

[Savant0.1] Oat Systems and MIT Auto-ID Center, “The Savant Version 0.1 (Alpha),” 2825
MIT Auto-ID Center Technical Manual MIT-AUTO-AUTOID-TM-003, February 2002, 2826
http://www.autoidlabs.org/whitepapers/MIT-AUTOID-TM-003.pdf. 2827

[Savant1.0] S. Clark, K. Traub, D. Anarkat, T. Osinski, E. Shek, S. Ramachandran, R. 2828
Kerth, J. Weng, B. Tracey, “Auto-ID Savant Specification 1.0,” Auto-ID Center Software 2829
Action Group Working Draft WD-savant-1_0-20031014, October 2003. 2830

[TDS1.1] EPCglobal, “EPC Tag Data Standards Version 1.1 Rev.1.24,” EPCglobal 2831
Standard Specification, April 2004, 2832
http://www.epcglobalinc.org/standards_technology/EPCTagDataSpecification11rev124.p2833
df. 2834

[WSDL1.1] E. Christensen, F. Curbera, G. Meredith, S. Weerawarana, “Web Services 2835
Description Language (WSDL) 1.1,” W3C Note, March 2001, 2836
http://www.w3.org/TR/2001/NOTE-wsdl-20010315. 2837

[WSI] K. Ballinger, D. Ehnebuske, M. Gudgin, M. Nottingham, P. Yendluri, “Basic 2838
Profile Version 1.0,” WS-i Final Material, April 2004, http://www.ws-2839
i.org/Profiles/BasicProfile-1.0-2004-04-16.html. 2840

[XML1.0] T. Bray, J. Paoli, C. M. Sperberg-McQueen, E. Maler, F. Yergeau, 2841
“Extensible Markup Language (XML) 1.0 (Third Edition),” W3C Recommendation, 2842
February 2004, http://www.w3.org/TR/2004/REC-xml-20040204/. 2843

[XSD1] H. Thompson, D. Beech, M. Maloney, N. Mendelsohn, “XML Schema Part 1: 2844
Structures,” W3C Recommendation, May 2001, http://www.w3.org/TR/xmlschema-1/. 2845

[XSD2] P. Biron, A. Malhotra, “XML Schema Part 2: Datatypes,” W3C 2846
Recommendation, May 2001, http://www.w3.org/TR/xmlschema-2/. 2847

[XMLVersioning] D. Orchard, “Versioning XML Vocabularies,” December 2003, 2848
http://www.xml.com/pub/a/2003/12/03/versioning.html. 2849

 2850

http://www.xml.com/pub/a/2003/12/03/versioning.html
http://www.w3.org/TR/xmlschema-2/
http://www.w3.org/TR/xmlschema-1/
http://www.w3.org/TR/2004/REC-xml-20040204/
http://www.ws-i.org/Profiles/BasicProfile-1.0-2004-04-16.html
http://www.ws-i.org/Profiles/BasicProfile-1.0-2004-04-16.html
http://www.w3.org/TR/2001/NOTE-wsdl-20010315
http://www.epcglobalinc.org/standards_technology/EPCTagDataSpecification11rev124.pdf
http://www.autoidlabs.org/whitepapers/MIT-AUTOID-TM-003.pdf
http://www.ietf.org/rfc/rfc2616
http://www.ietf.org/rfc/rfc2396
http://www.ietf.org/rfc/rfc1738
http://www.epcglobalinc.org

