GSMP Scan4Transport (S4T) - Phase 2 Prototype testing and Implementation Guideline
Mission Specific Working Group (MSWG) WR – 20-319

Project Description
Standards describing the contents and structuring of the GS1 2D barcode symbol (and other GS1 data carriers) on the transport component of the GS1 Logistic Label, particularly data elements that enable the transport process in the absence of access to host applications providing information related to the transport unit

Key Transportation Process
- First/Last Mile process (e.g. delivery route optimisation)
- Sortation/Auto-sortation process (e.g. efficient sorting of parcels in the depot)
- Administration process (e.g. capturing proof-of-delivery, billing)

Deliverable/Objective
Conduct prototype testing
Develop a GS1 S4T Implementation Guideline

Project Description
Standards describing the contents and structuring of the GS1 2D barcode symbol (and other GS1 data carriers) on the transport component of the GS1 Logistic Label, particularly data elements that enable the transport process in the absence of access to host applications providing information related to the transport unit

Key Transportation Process
- First/Last Mile process (e.g. delivery route optimisation)
- Sortation/Auto-sortation process (e.g. efficient sorting of parcels in the depot)
- Administration process (e.g. capturing proof-of-delivery, billing)

Deliverable/Objective
Conduct prototype testing
Develop a GS1 S4T Implementation Guideline

Completed last 30 days
- Ratification/Publication S4T Implementation Guideline (IG) WR 20-319
- S4T IG Errata WR 21-249 to fix check digit character and labels for consistency

Next steps
- Finalise S4T Pilot Report (Collateral Development)
- Harmonise S4T IG Appendix C Measuring transport unit dimensions WR 21-317
- Geo-coordinates GSCN WR 21-318
- TBD Plan Phase 3 S4T Digital Link Standard

Risks and Issues
Interested Join Scan4Transport | GS1

Company participation

<table>
<thead>
<tr>
<th>Company participation</th>
<th>Actual roster</th>
<th>Required roster</th>
<th>Minimum votes</th>
<th>Officer(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Shipper</td>
<td>5</td>
<td>2</td>
<td>2</td>
<td>Elzbieta HALAS - GS1 Poland</td>
</tr>
<tr>
<td>Transport Companies</td>
<td>9</td>
<td>2</td>
<td>2</td>
<td>Marianne TIMMONS – GS1 GO</td>
</tr>
<tr>
<td>MO’s</td>
<td>27</td>
<td>2</td>
<td>2</td>
<td>SDL J. John RYU- GS1 GO</td>
</tr>
<tr>
<td>Solution Providers</td>
<td>6</td>
<td>2</td>
<td>2</td>
<td>CE/Sol Liaison</td>
</tr>
<tr>
<td>Other</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>SME Dan MULLEN and Mark HARRISON – GS1 GO</td>
</tr>
</tbody>
</table>

Stakeholders
- Sponsor(s) Elzbieta HALAS - GS1 Poland
- Marianne TIMMONS – GS1 GO
- SDL J. John RYU- GS1 GO
- CE/Sol Liaison
- Thierry GRUMIAUX - GS1 France
- SME Dan MULLEN and Mark HARRISON – GS1 GO
- AG Liaison
- Eugen SEHORZ –GS1 Austria
- Chairs Michiel RUIGHAVER – GS1 Australia

Legend
G On schedule
Y Minor Risk/~10% behind schedule
R Significant risk/10%+ behind schedule
C Complete

Update for
1 November 2021
Transport operators from around the world rely on the transport data encoded on a logistics label to support their daily operations. Currently, this data is captured in various proprietary formats. As the number of transport providers grows, so do these proprietary solutions, especially when it comes to two-dimensional (2D) barcodes.

Consider that many retailers and shippers must use dozens upon dozens of transport providers and just as many different ways to encode the same information on a transport label. Driving this proliferation of transport providers are consumers. They are demanding increasingly more delivery options—demands that can only be fulfilled with more transport providers. For retailers and shippers, there is excessive waste associated with the development costs and time required to setup many different transport providers in their transport systems and processes.