

 Copyright © 2004–2009 EPCglobal®, All Rights Reserved. Page 1 of 229

 1

2

3

4

5
6
7

8
9

10
11
12
13
14
15
16
17
18
19
20

The Application Level Events (ALE) Specification,
Version 1.1.1
Part I: Core Specification
EPCglobal Ratified Standard with Fixed Errata
13 March 2009
Previous Version: 1.1
Disclaimer
EPCglobal Inc™ is providing this document as a service to interested industries.
This document was developed through a consensus process of interested
parties.
Although efforts have been to assure that the document is correct, reliable, and
technically accurate, EPCglobal Inc. makes NO WARRANTY, EXPRESS OR
IMPLIED, THAT THIS DOCUMENT IS CORRECT, WILL NOT REQUIRE
MODIFICATION AS EXPERIENCE AND TECHNOLOGICAL ADVANCES
DICTATE, OR WILL BE SUITABLE FOR ANY PURPOSE OR WORKABLE IN
ANY APPLICATION, OR OTHERWISE. Use of this document is with the
understanding that EPCglobal Inc. has no liability for any claim to the contrary, or
for any damage or loss of any kind or nature.

Copyright notice 21

© 2006, 2007, 2008, 2009 EPCglobal Inc. 22

 All rights reserved. Unauthorized reproduction, modification, and/or use of this document is not 23
permitted. Requests for permission to reproduce should be addressed to 24
epcglobal@epcglobalinc.org. 25
 26
EPCglobal Inc.TM is providing this document as a service to interested industries. This 27
document was developed through a consensus process of interested parties. Although efforts 28
have been to assure that the document is correct, reliable, and technically accurate, EPCglobal 29
Inc. makes NO WARRANTY, EXPRESS OR IMPLIED, THAT THIS DOCUMENT IS 30
CORRECT, WILL NOT REQUIRE MODIFICATION AS EXPERIENCE AND TECHNOLOGICAL 31
ADVANCES DICTATE, OR WILL BE SUITABLE FOR ANY PURPOSE OR WORKABLE IN 32
ANY APPLICATION, OR OTHERWISE. Use of this Document is with the understanding that 33
EPCglobal Inc. has no liability for any claim to the contrary, or for any damage or loss of any 34
kind or nature 35

36

mailto:epcglobal@epcglobalinc.org

 Copyright © 2004–2009 EPCglobal®, All Rights Reserved. Page 2 of 229

Abstract 37

38
39
40
41
42
43
44
45
46

47
48
49
50
51
52
53
54
55
56
57
58
59
60

61
62
63
64
65
66

68
69
70
71
72
73

75
76

78

This document specifies an interface through which clients may interact with filtered,
consolidated EPC data and related data from a variety of sources. The design of this
interface recognizes that in most EPC processing systems, there is a level of processing
that reduces the volume of data that comes directly from EPC data sources such as RFID
readers into coarser “events” of interest to applications. It also recognizes that
decoupling these applications from the physical layers of infrastructure offers cost and
flexibility advantages to technology providers and end-users alike. The interface
described herein, and the functionality it implies, is called “Application Level Events,” or
ALE.

This ALE 1.1 specification is a backward-compatible follow on specification to the ALE
1.0 specification, ratified by EPCglobal in September 2005. The ALE 1.0 specification
provided only an interface for reading data (not writing), and only provided access to
EPC data. The present ALE 1.1 specification expands upon ALE 1.0 to address writing
as well as reading, and both the reading and writing aspects address not only EPC data
but also other data that may be present on EPC data carriers. In particular, the ALE 1.1
specification is designed to provide full access to the functionality of the EPCglobal UHF
Class 1 Gen 2 Air Interface (“Gen2”) specification, when interacting with Gen2 RFID
Tags. This includes reading and writing all memory banks, as well as exercising specific
operations such as “lock” and “kill.” In ALE 1.1, additional tag types may easily be
accomodated in the future. In addition to providing reading and writing functionality, the
ALE 1.1 specification also provides new interfaces for defining tag memory fields, for
managing the naming of data source names (“logical readers”), and for securing the use
of the APIs.

The role of the ALE interface within the EPCglobal Network Architecture is to provide
independence between the infrastructure components that acquire the raw EPC data, the
architectural component(s) that filter & count that data, and the applications that use the
data. This allows changes in one without requiring changes in the other, offering
significant benefits to both the technology provider and the end-user. The ALE interface
described in the present specification achieves this independence through five means:

• It provides a means for clients to specify, in a high-level, declarative way, what data 67
they are interested in or what operations they want performed, without dictating an
implementation. The interface is designed to give implementations the widest
possible latitude in selecting strategies for carrying out client requests; such strategies
may be influenced by performance goals, the native abilities of readers or other
devices which may carry out certain filtering or counting operations at the level of
firmware or RF protocol, and so forth.

• It provides a standardized format for reporting accumulated, filtered data and results 74
from carrying out operations that is largely independent of where the data originated
or how it was processed.

• It abstracts the channels through which data carriers are accessed into a higher-level 77
notion of “logical reader,” often synonymous with “location,” hiding from clients the

 Copyright © 2004–2009 EPCglobal®, All Rights Reserved. Page 3 of 229

details of exactly what physical devices were used to interact with data relevant to a
particular logical location. This allows changes to occur at the physical layer (for
example, replacing a 2-port multi-antenna reader at a loading dock door with three
“smart antenna” readers) without affecting client applications. Similarly, it abstracts
away the fine-grained details of how data is gathered (e.g., how many individual tag
read attempts were carried out). These features of abstraction are a consequence of
the way the data specification and reporting aspects of the interface are designed.

79
80
81
82
83
84
85

87
88
89
90
91
92
93

95
96

97
98
99

100
101
102
103

104

105

110

111
112
113

• It abstracts the addressing of information stored on Tags and other data carriers into a 86
higher-level notion of named, typed “fields,” hiding from clients the details of how a
particular data element is encoded into a bit-level representation and stored at a
particular address within a data carrier’s memory. This allows application logic to
remain invariant despite differences between the memory organization of different
data carriers (for example, differences between Gen 1 and Gen 2 RFID Tags), and
also shields application logic from having to understand complex layout or data
parsing rules.

• It provides a security mechanism so that administrators may choose which operations 94
a given application may perform, as a policy that is decoupled from application logic
itself.

This Part I specifies at an abstract level all interfaces that are part of the ALE
specification, using UML notation. Part II of the specification [ALE1.1Part2] specifies
XML-based wire protocol bindings of the interfaces, including XSD schemas for all data
types, WS-I compliant WSDL definitions of SOAP bindings of the service interfaces, and
several XML-based bindings of callback interfaces used in certain modes of reading and
writing data. Implementations may provide additional bindings of the API, including
bindings to particular programming languages.

Audience for this document
The target audience for this specification includes:

• EPC Middleware vendors 106

• Reader vendors 107

• Application developers 108

• System integrators 109

Status of this document
This section describes the status of this document at the time of its publication. Other
documents may supersede this document. The latest status of this document series is
maintained at EPCglobal. See www.epcglobalinc.org for more information.

http://www.epcglobalinc.org/

 Copyright © 2004–2009 EPCglobal®, All Rights Reserved. Page 4 of 229

This version fixes errata found in version 1.1 of ALE that was ratified on February 27,
2008. The Technical Steering Committeee (TSC) approved the errata fixes in the 1.1.1
version on March 13, 2009.

114
115
116

117
118

Comments on this document should be sent to the EPCglobal Software Action Group
Filtering and Collection 1.1 Working Group mailing list
sag_fc1_1_wg@lists.epcglobalinc.org. 119

120

121
122
123

Errata Fixed in ALE 1.1.1
The following table summarizes errata in ALE 1.1 that are fixed in ALE 1.1.1. All fixed
errata in ALE 1.1.1 apply to Part I of the specification; there are no changes to Part II.
For a comparison between ALE 1.1 and ALE 1.0, please see Section 16.

Section Place Old Text Change

5.4.2 2nd bullet in
2nd bulleted
list

“…it causes the tag to be
omitted from the event cycle”

Changed to “…it is treated as
a failure to match the pattern;
that is, it causes the Tag to fail
an INCLUDE filter or pass an
EXCLUDE filter.”

5.4.2 1st bullet in
3rd bulleted
list

“…it causes the tag to be
omitted from the event cycle”

Changed to “…it is treated as
a failure to match the pattern;
that is, it causes the Tag to fail
an INCLUDE filter or pass an
EXCLUDE filter.”

5.4.3 2nd bullet in
1st bulleted
list

“…it causes the tag to be
omitted from the event cycle”

Changed to “…it is treated as
a failure to match the pattern;
that is, it causes the Tag to fail
an INCLUDE filter or pass an
EXCLUDE filter.”

5.4.3 1st bullet in
2nd bulleted
list

“…it causes the tag to be
omitted from the event cycle”

Changed to “…it is treated as
a failure to match the pattern;
that is, it causes the Tag to fail
an INCLUDE filter or pass an
EXCLUDE filter.”

5.4.3 2nd bullet in
2nd bulleted
list

“FIELD_NOT_
FOUND_ERROR”

Changed to “OP_NOT_
POSSIBLE_ERROR”

6.2.1 2nd paragraph Two parenthesized comments
are added.

mailto:sag_fc1_1_wg@lists.epcglobalinc.org

 Copyright © 2004–2009 EPCglobal®, All Rights Reserved. Page 5 of 229

Section Place Old Text Change

8.2 Last bullet
following
Table 31

 Added sentence: “An
implementation SHALL
NOT, however, raise the
exception if
primaryKeyFields is
omitted or its value is a list
consisting of the single
element epc.”

8.2.14 20th bullet Added sentence: “An
implementation SHALL
NOT, however, raise the
exception if
primaryKeyFields is
omitted or its value is a list
consisting of the single
element epc.”

9.3.5 Last row of
Table 64,
dataSpec
column

“The lock action to be
performed.”

Changed to: “A LITERAL
dataSpec whose value
specifies the lock action to be
performed.”

9.3.5.2.2 3rd paragraph “…in the EPC/UII memory
bank.”

Changed to: “…in the User
memory bank.”

9.5.3 First row of
Table 82,
Description
column

 Added to end of first
sentence: “…which field must
be numeric.”

9.5.3 Non-
normative
note

 Added text to end of non-
normative note, beginning
“Note that wildcard fields
must be numeric…” and
continuing through the end of
the note.

17 [Gen2]
bibliography
entry

 Updated to refer to Version
1.1.0 of the Gen2
specification.

 124

125

126

Table of Contents
1 Introduction .. 16

 Copyright © 2004–2009 EPCglobal®, All Rights Reserved. Page 6 of 229

2 Role Within the EPCglobal Network Architecture .. 19 127

128

129

130

131

132

133

134

135

136
137

138

139

140

141

142

143

144

145

146

147

148

149

150

151
152

153
154

155

156

157

158

159

3 Terminology and Typographical Conventions ... 23

4 ALE Interfaces ... 23

4.1 UML Notation for APIs ... 24

4.2 API Interaction .. 25

4.3 Version Introspection Methods ... 25

4.4 Classes Common to the Reading and Writing APIs .. 27

4.5 Interpretation of Names ... 27

4.6 Scoping of Names .. 28

4.7 Equivalance of Null, Omitted, and Empty String Values, and of Omitted and
Empty Lists .. 29

5 ALE Concepts and Principles of Operation ... 29

5.1 Fundamental ALE Concepts .. 29

5.2 Event Cycles .. 31

5.2.1 Group Reports ... 34

5.3 Command Cycles ... 35

5.4 Tag Data Model ... 37

5.4.1 Default Datatype and Format .. 38

5.4.2 “Field Not Found” Co9ndition.. 39

5.4.3 “Operation Not Possible” Condition ... 40

5.4.4 “Out of Range” Condition .. 41

5.4.5 Pattern Fieldnames .. 41

5.5 Reader Cycle Timing ... 41

5.6 Execution of Event Cycles and Command Cycles .. 42

5.6.1 Lifecycle State Transitions for EC/CCSpecs Created by the Define Method
 43

5.6.2 Lifecycle State Transitions for EC/CCSpecs Created by the Immediate
Method 48

6 Built-in Fieldnames, Datatypes, and Formats .. 50

6.1 Built-in Fieldnames ... 50

6.1.1 The epc fieldname ... 50

6.1.2 The killPwd fieldname ... 51

6.1.3 The accessPwd fieldname ... 51

 Copyright © 2004–2009 EPCglobal®, All Rights Reserved. Page 7 of 229

6.1.4 The epcBank fieldname ... 52 160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

6.1.5 The tidBank fieldname ... 52

6.1.6 The userBank fieldname ... 53

6.1.7 The afi fieldname ... 53

6.1.8 The nsi fieldname ... 54

6.1.9 Generic Fieldnames .. 54

6.1.9.1 Absolute Address Fieldnames .. 54

6.1.9.2 Variable Fieldnames ... 55

6.1.9.3 Variable Pattern Fieldnames .. 57

6.2 Built-in Datatypes and Formats ... 57

6.2.1 The epc datatype .. 58

6.2.1.1 Binary Encoding and Decoding of the EPC Datatype 58

6.2.1.2 EPC datatype Formats .. 58

6.2.1.3 EPC datatype Pattern Syntax .. 59

6.2.1.4 EPC datatype Grouping Pattern Syntax ... 60

6.2.2 Unsigned Integer (uint) Datatype .. 63

6.2.2.1 Binary Encoding and Decoding of the Unsigned Integer Datatype 63

6.2.2.2 Unsigned Integer Datatype Formats ... 63

6.2.2.3 Unsigned Integer Pattern Syntax .. 64

6.2.2.4 Unsigned Integer Grouping Pattern Syntax ... 64

6.2.3 The bits Datatype .. 66

6.2.3.1 Binary Encoding and Decoding of the Bits Datatype 66

6.2.3.2 Bits Datatype Formats .. 67

6.2.3.3 Bits Pattern Syntax ... 67

6.2.3.4 Bits Grouping Pattern Syntax ... 67

6.2.4 ISO 15962 String Datatype ... 68

6.2.4.1 ISO 15962 String Format ... 68

6.2.4.2 ISO 15962 String Pattern Syntax ... 68

6.2.4.3 ISO 15962 String Grouping Pattern Syntax ... 68

7 Tag Memory Specification API ... 68

7.1 ALETM – Main API class ... 69

7.1.1 Error Conditions .. 70

 Copyright © 2004–2009 EPCglobal®, All Rights Reserved. Page 8 of 229

7.2 TMSpec (abstract) ... 72 192

193

194

195

196

197

198

199

200

201

202

203

204

205

206

207

208

209

210

211

212

213

214

215

216

217

218

219

220

221

222

223

7.3 TMFixedFieldListSpec .. 73

7.4 TMFixedFieldSpec .. 73

7.5 TMVariableFieldListSpec ... 75

7.6 TMVariableFieldSpec ... 75

8 ALE Reading API .. 76

8.1 ALE – Main API Class .. 77

8.1.1 Error Conditions .. 80

8.2 ECSpec .. 83

8.2.1 ECBoundarySpec .. 86

8.2.2 ECTime ... 89

8.2.3 ECTimeUnit .. 90

8.2.4 ECTrigger ... 90

8.2.4.1 Real-time Clock Standardized Trigger ... 91

8.2.5 ECReportSpec ... 92

8.2.6 ECReportSetSpec .. 95

8.2.7 ECFilterSpec ... 96

8.2.8 ECFilterListMember ... 98

8.2.9 ECGroupSpec ... 99

8.2.10 ECReportOutputSpec .. 101

8.2.11 ECReportOutputFieldSpec .. 104

8.2.12 ECFieldSpec .. 105

8.2.13 ECStatProfileName ... 106

8.2.14 Validation of ECSpecs... 106

8.3 ECReports .. 108

8.3.1 ECInitiationCondition ... 109

8.3.2 ECTerminationCondition .. 110

8.3.3 ECReport... 111

8.3.4 ECReportGroup .. 112

8.3.5 ECReportGroupList .. 113

8.3.6 ECReportGroupListMember... 114

8.3.7 ECReportMemberField ... 116

 Copyright © 2004–2009 EPCglobal®, All Rights Reserved. Page 9 of 229

8.3.8 ECReportGroupCount... 117 224

225

226

227

228

229

230

231

232

233

234

235

236

237

238

239

240

241

242

243

244

245

246

247

248

249

250

251

252

253

254

255

8.3.9 ECTagStat ... 118

8.3.10 ECReaderStat... 118

8.3.11 ECSightingStat .. 119

8.3.12 ECTagTimestampStat .. 119

8.4 ALECallback Interface .. 121

9 ALE Writing API ... 121

9.1 ALECC Class .. 122

9.1.1 Error Conditions .. 125

9.2 CCParameterList ... 129

9.2.1 CCParameterListEntry .. 129

9.3 CCSpec .. 129

9.3.1 CCBoundarySpec .. 130

9.3.2 CCCmdSpec .. 133

9.3.3 CCFilterSpec ... 136

9.3.4 CCOpSpec... 137

9.3.5 CCOpType .. 139

9.3.5.1 Values for the CHECK Operation .. 141

9.3.5.1.1 EPC/UII Memory Bank CHECK Operation 141

9.3.5.1.2 User Memory Bank CHECK Operation .. 141

9.3.5.2 Values for the INITIALIZE Operation .. 142

9.3.5.2.1 EPC/UII Memory Bank INITIALIZE Operation 142

9.3.5.2.2 User Memory Bank INITIALIZE Operation 143

9.3.6 CCOpDataSpec ... 144

9.3.7 CCOpDataSpecType ... 147

9.3.8 CCLockOperation ... 147

9.3.9 CCStatProfileName... 148

9.3.10 Validation of CCSpecs .. 148

9.4 CCReports ... 149

9.4.1 CCInitiationCondition... 151

9.4.2 CCTerminationCondition ... 152

9.4.3 CCCmdReport... 154

 Copyright © 2004–2009 EPCglobal®, All Rights Reserved. Page 10 of 229

9.4.4 CCTagReport .. 154 256

257

258

259

260

261

262

263

264

265

266

267

268

269

270

271

272

273

274

275

276

277

278

279

280

281

282

283

284

285

286

287

9.4.5 CCOpReport ... 155

9.4.6 CCStatus ... 156

9.4.7 CCTagStat ... 159

9.5 EPCCache .. 160

9.5.1 Exceptions ... 161

9.5.2 EPCCacheSpec ... 163

9.5.3 EPCPatternList .. 163

9.6 AssociationTable ... 164

9.6.1 Exceptions ... 166

9.6.2 AssocTableSpec .. 168

9.6.3 AssocTableEntryList ... 169

9.6.4 AssocTableEntry ... 170

9.7 Random Number Generator ... 170

9.7.1 Exceptions ... 171

9.7.2 RNGSpec .. 172

9.8 ALECCCallback Interface ... 172

10 ALE Logical Reader API .. 173

10.1 Background (non-normative) ... 173

10.2 ALE Logical Reader API ... 174

10.3 API ... 176

10.3.1 Error Conditions .. 179

10.3.2 Conformance Requirements .. 183

10.4 LRSpec ... 185

10.5 LRProperty ... 186

10.6 Tag Smoothing ... 186

11 Access Control API ... 190

11.1 API ... 192

11.2 Error Conditions ... 196

11.3 ACClientIdentity .. 200

11.4 ACClientCredential .. 201

11.5 ACRole ... 201

 Copyright © 2004–2009 EPCglobal®, All Rights Reserved. Page 11 of 229

11.6 ACPermission... 202 288

289

290

291

292

293

294

295

296

297

298

299

300

301

302

303

304

305

306

307

308

309

310

311

312

313

314

315

316

317
318

319

11.7 Access Permission Classes (ACClass) ... 203

11.7.1 Instance Names for the Method Class ... 203

11.8 Partial Implementations .. 204

11.9 Anonymous User .. 206

11.10 Initial State ... 206

12 Use Cases (non-normative) ... 206

12.1 Reading API Use Cases .. 207

12.2 Writing API Use Cases .. 208

13 ALE Scenarios (non-normative) ... 210

13.1 ALE Context .. 210

13.2 Interaction Scenarios .. 211

13.2.1 Subscribing for Asynchronous Notifications .. 212

13.2.1.1 Assumptions ... 212

13.2.1.2 Description ... 213

13.2.2 Polling for Synchronous Results ... 213

13.2.2.1 Assumptions ... 214

13.2.2.2 Description ... 214

13.2.3 Defining a Single-Use Spec and Receiving a Synchronous Report 215

13.2.3.1 Assumptions ... 215

13.2.3.2 Description ... 215

14 Appendix: EPC Patterns (non-normative) ... 216

15 Glossary (non-normative) ... 217

16 Appendix: Changes in ALE 1.1 (non-normative) .. 220

16.1 Changes to the ALE Reading API .. 220

16.2 New APIs ... 221

16.3 New Bindings ... 221

16.4 Clarifications .. 221

17 References ... 222

18 Acknowledgement of Contributors and of Companies Opt’d-in during the Creation
of this Standard (non-normative) .. 222

 List of Tables

 Copyright © 2004–2009 EPCglobal®, All Rights Reserved. Page 12 of 229

Table 1. ALE APIs .. 24 320

321

322

323

324

325

326

327

328

329

330

331

332

333

334

335

336

337

338

339

340

341

342

343

344

345

346

347

348

349

350

351

Table 2. Version Introspection Methods ... 26

Table 3. Classes Common to the Reading and Writing APIs 27

Table 4. Illustration of Fieldname, Datatype, and Format .. 37

Table 5. EC/CCSpec Lifecycle States... 43

Table 6. State Transitions from the Unrequested State ... 44

Table 7. State Transitions from the Requested State .. 46

Table 8. State Transitions from the Active State .. 47

Table 9. State Transitions from the Requested State .. 49

Table 10. State Transitions from the Active State .. 50

Table 11. Bank Values for Absolute Address Fieldnames ... 55

Table 12. Bank Values for Variable Fieldnames .. 56

Table 13. EPC Datatype Formats .. 59

Table 14. EPC Datatype Pattern Formats ... 60

Table 15. EPC Datatype Grouping Formats ... 60

Table 16. Meaning of EPC Grouping Pattern Field Values .. 61

Table 17. Examples of EPC Grouping Patterns .. 61

Table 18. Example EPC Grouping Result .. 62

Table 19. EPC Grouping Pattern Disjointedness Test .. 62

Table 20. Unsigned Integer Grouping Pattern Field Values ... 65

Table 21. Unsigned Integer Grouping Pattern Disjointedness Test 65

Table 22. Rules for Writing bits Values to Fields of Differing Lengths 67

Table 23. ALETM Interface Methods ... 70

Table 24. Exceptions for the ALETM Interface ... 71

Table 25. Exceptions Raised by each ALETM Interface Method 72

Table 26. TMFixedFieldSpec Fields ... 74

Table 27. TMVariableFieldSpec Fields .. 75

Table 28. ALE Interface Methods... 80

Table 29. Exceptions in the ALE Interface ... 82

Table 30. Exceptions Raised by each ALE Interface Method 83

Table 31. ECSpec Fields ... 84

Table 32. ECBoundarySpec Fields .. 87

 Copyright © 2004–2009 EPCglobal®, All Rights Reserved. Page 13 of 229

Table 33. ECTime Fields ... 90 352

353

354

355

356

357

358

359

360

361

362

363

364

365

366

367

368

369

370

371

372

373

374

375

376

377

378

379

380

381

382

Table 34. ECTimeUnit Fields .. 90

Table 35. Real-time Clock Trigger URI Fields ... 91

Table 36. ECReportSpec Fields ... 93

Table 37. ECReportSetSpec Values .. 95

Table 38. ECFilterSpec Fields ... 97

Table 39. ECFilterListMember Instances ... 99

Table 40. ECGroupSpec Fields ... 100

Table 41. ECReportOutputSpec Instance ... 103

Table 42. ECReportOutputFieldSpec Fields ... 105

Table 43. ECFieldSpec Fields ... 105

Table 44. ECReports Fields .. 109

Table 45. ECInitiationCondition Values .. 110

Table 46. ECTerminationCondition Values .. 111

Table 47. ECReport Fields ... 112

Table 48. ECReportGroup Fields ... 113

Table 49. ECReportGroupList Fields ... 113

Table 50. ECReportGroupListMember Fields ... 116

Table 51. ECReportMemberField Fields .. 117

Table 52. ECReportGroupCount Fields ... 117

Table 53. ECTagStat Fields .. 118

Table 54. ECReaderStat Fields ... 119

Table 55. ECTagTimestampStat Fields ... 120

Table 56. ALECC Interface Methods ... 125

Table 57. Exceptions in the ALECC Interface ... 127

Table 58. Exceptions Raised for each ALECC Interface Method 128

Table 59. CCSpec Fields ... 130

Table 60. CCBoundarySpec Fields .. 132

Table 61. CCCmdSpec Fields .. 135

Table 62. CCFilterSpec Fields ... 136

Table 63. CCOpSpec Fields ... 138

 Copyright © 2004–2009 EPCglobal®, All Rights Reserved. Page 14 of 229

Table 64. CCOpType Values ... 141 383

384

385

386

387

388

389

390

391

392

393

394

395

396

397

398

399

400
401

402

403

404

405
406

407

408

409

410

411

412
413

414

Table 65. CCOpDataSpec Fields ... 144

Table 66. CCOpDataSpec specType Fields ... 145

Table 67. CCOpDataSpec Validation Rules .. 146

Table 68. CCLockOperation Values .. 147

Table 69. Meaning of “subsequent privileged operations” ... 148

Table 70. CCReports Fields .. 151

Table 71. CCInitiationCondition Values .. 152

Table 72. CCTerminationCondition Values .. 153

Table 73. CCCmdReport Fields ... 154

Table 74. CCTagReport Fields ... 155

Table 75. CCOpReport Fields .. 156

Table 76. CCOpReport data Field Values ... 156

Table 77. CCStatus Values ... 159

Table 78. CCTagStat Fields .. 159

Table 79. ALECC Interface Methods (continued from Table 56) 161

Table 80. Exceptions in the ALECC Interface (continued from Table 57) 162

Table 81. Exceptions Raised by each ALECC Interface Method (continued from Table
58) 163

Table 82. EPCPatternList Fields .. 163

Table 83. ALECC Interface Methods (continued from Table 79) 166

Table 84. Exceptions in the ALECC Interface (continued from Table 80) 167

Table 85. Exceptions Raised by each ALECC Interface Method (continued from Table
81) 168

Table 86. AssocTableSpec Fields .. 169

Table 87. AssocTableEntryList Fields .. 169

Table 88. AssocTableEntry Fields .. 170

Table 89. ALECC Interface Methods (continued from Table 83) 171

Table 90. Exceptions in the ALECC Interface (continued from Table 84) 171

Table 91. Exceptions Raised by each ALECC Interface Method (continued from Table
85) 172

Table 92. RNGSpec Fields.. 172

 Copyright © 2004–2009 EPCglobal®, All Rights Reserved. Page 15 of 229

Table 93. ALELR Interface Methods ... 178 415

416

417

418

419

420

421

422

423

424

425

426

427

428

429

430

431

432

433

434

435

436

437

Table 94. Behavior of the setProperties Method of the ALELR Interface 178

Table 95. Exceptions in the ALELR Interface .. 181

Table 96. Exceptions Raised by each ALELR Interface Method 183

Table 97. Conformance Requirements for ALELR Interface Methods 184

Table 98. LRSpec Fields ... 185

Table 99. LRProperty Fields .. 186

Table 100. Tag Smoothing State Transitions .. 188

Table 101. Tag Smoothing Properties ... 190

Table 102. ALEAC Interface Methods .. 196

Table 103. Exceptions in the ALEAC Interface .. 197

Table 104. Exceptions Raised by each ALEAC Interface Method 200

Table 105. ACClientIdentity Fields .. 201

Table 106. ACRole Fields .. 202

Table 107. ACPermission Fields .. 202

Table 108. ACClass Values .. 203

Table 109. Method Permission Class Instance Names for APIs 204

Table 110. Summary of ALE Interface Use Cases .. 208

Table 111. Summary of ALECC Interface Use Cases .. 210

Table 112. EPC Pattern Examples ... 217

Table 113. Glossary ... 220

 Copyright © 2004–2009 EPCglobal®, All Rights Reserved. Page 16 of 229

1 Introduction 438
This document specifies an interface through which clients may interact with filtered,
consolidated EPC data and related data from a variety of sources. The design of this
interface recognizes that in most EPC processing systems, there is a level of processing
that reduces the volume of data that comes directly from EPC data sources such as RFID
readers into coarser “events” of interest to applications. It also recognizes that
decoupling these applications from the physical layers of infrastructure offers cost and
flexibility advantages to technology providers and end-users alike.

439
440
441
442
443
444
445

446
447
448
449
450
451
452
453
454
455
456
457

458
459
460
461
462
463
464
465
466
467
468
469
470
471

472
473
474
475
476
477

479
480

Broadly speaking, client interactions with EPC data can be divided into reading activity
and writing activity. For reading activity, the processing done between the physical data
sources and client applications typically involves: (1) receiving EPCs and related data
from one or more data sources such as RFID readers; (2) accumulating data over
intervals of time, filtering to eliminate duplicate data and data that are not of interest, and
counting and grouping data to reduce the volume of data; and (3) reporting in various
forms. For writing activity, the processing typically involves: (1) isolating
(“singulating”) individual data carriers such as RFID Tags through one or more channels
such as RFID readers; (2) operating upon the data carriers by writing data, reading data,
or performing other operations; and (3) reporting in various forms. The interface
described herein, and the functionality it implies, is called “Application Level Events,” or
ALE.

The ALE 1.0 specification [ALE1.0], ratified by EPCglobal in September 2005, was the
first specification at this level of the architecture. The ALE 1.0 specification provided
only an interface for reading data (not writing), and only provided access to EPC data.
The present ALE 1.1 specification expands upon ALE 1.0 to address writing as well as
reading, and both the reading and writing aspects address not only EPC data but also
other data that may be present on EPC data carriers. In particular, the ALE 1.1
specification is designed to provide full access to the functionality of the EPCglobal UHF
Class 1 Gen 2 [Gen2] specification, when interacting with Gen2 RFID Tags. This
includes reading and writing all memory banks, as well as exercising specific operations
such as “lock” and “kill.” In ALE 1.1, additional tag types may easily be accomodated in
the future. In addition to providing reading and writing functionality, the ALE 1.1
specification also provides new interfaces for defining tag memory fields, for managing
the naming of data source names (“logical readers”), and for securing the use of the APIs.
A complete list of changes from the ALE 1.0 specification may be found in Section 16.

The role of the ALE interface within the EPCglobal Network Architecture is to provide
independence between the infrastructure components that acquire the raw EPC data, the
architectural component(s) that filter & count that data, and the applications that use the
data. This allows changes in one without requiring changes in the other, offering
significant benefits to both the technology provider and the end-user. The ALE interface
described in the present specification achieves this independence through five means:

• It provides a means for clients to specify, in a high-level, declarative way, what data 478
they are interested in or what operations they want performed, without dictating an
implementation. The interface is designed to give implementations the widest

 Copyright © 2004–2009 EPCglobal®, All Rights Reserved. Page 17 of 229

possible latitude in selecting strategies for carrying out client requests; such strategies
may be influenced by performance goals, the native abilities of readers or other
devices which may carry out certain filtering or counting operations at the level of
firmware or RF protocol, and so forth.

481
482
483
484

486
487

489
490
491
492
493
494
495
496

498
499
500
501
502
503
504

506
507

508
509
510
511
512
513
514
515

516

518
519
520

522

• It provides a standardized format for reporting accumulated, filtered data and results 485
from carrying out operations that is largely independent of where the data originated
or how it was processed.

• It abstracts the channels through which data carriers are accessed into a higher-level 488
notion of “logical reader,” often synonymous with “location,” hiding from clients the
details of exactly what physical devices were used to interact with data relevant to a
particular logical location. This allows changes to occur at the physical layer (for
example, replacing a 2-port multi-antenna reader at a loading dock door with three
“smart antenna” readers) without affecting client applications. Similarly, it abstracts
away the fine-grained details of how data is gathered (e.g., how many individual tag
read attempts were carried out). These features of abstraction are a consequence of
the way the data specification and reporting aspects of the interface are designed.

• It abstracts the addressing of information stored on Tags and other data carriers into a 497
higher-level notion of named, typed “fields,” hiding from clients the details of how a
particular data element is encoded into a bit-level representation and stored at a
particular address within a data carrier’s memory. This allows application logic to
remain invariant despite differences between the memory organization of different
data carriers (for example, differences between Gen 1 and Gen 2 RFID Tags), and
also shields application logic from having to understand complex layout or data
parsing rules.

• It provides a security mechanism so that administrators may choose which operations 505
a given application may perform, as a policy that is decoupled from application logic
itself.

The ALE specification does not specify a particular implementation strategy, or internal
interfaces within a specific body of software. Instead, this specification focuses
exclusively on external interfaces, admitting a wide variety of possible implementations
so long as they fulfill the contract of the interfaces. For example, it is possible to
envision an implementation of these interfaces as an independent piece of software that
speaks to RFID readers using their network wire protocols. It is equally possible,
however, to envision another implementation in which the software implementing these
interfaces is part of the reader device itself.

The objectives of ALE as described above are motivated by twin architectural goals:

1. To drive as much filtering, counting, and other low-level processing as low in the 517
architecture as possible (i.e., in first preference to readers or other devices, then to
low-level, application-independent software (“middleware” or embedded software),
and as a last resort to “applications”), while meeting application and cost needs;

2. At the same time, to minimize the amount of “business logic” embedded in the tags, 521
readers, embedded software/middleware, where business logic is either data or

 Copyright © 2004–2009 EPCglobal®, All Rights Reserved. Page 18 of 229

processing logic that is particular to an individual product, product category, industry
or business process.

523
524

525
526
527
528
529
530
531
532
533
534
535

536
537
538
539
540
541

542
543
544
545
546

548
549
550
551

553
554
555
556
557
558
559
560
561
562

563
564
565

The Application Level Events (ALE) interface specified herein is intended to facilitate
these objectives by providing a flexible interface to a standard set of accumulation,
filtering, counting, writing, and other operations that produce “reports” in response to
client “requests.” The client will be responsible for interpreting and acting on the
meaning of the report (i.e., the “business logic”). The client of the ALE interface may be
a traditional “enterprise application,” or more commonly it may be new software
designed expressly to carry out an EPC-enabled operational process but which operates at
a higher level than the “middleware” or embedded software that implements the ALE
interface. Hence, the term “Application Level Events” should not be misconstrued to
mean that the client of the ALE interface is necessarily a traditional “enterprise
application.”

The ALE interface revolves around client requests and the corresponding reports that are
produced. Requests can either be: (1) immediate, in which information is reported on a
one-time basis at the time of the request; or (2) recurring, in which information is
reported repeatedly whenever an event is detected or at a specified time interval. The
results reported in response to a request can be directed back to the requesting client or to
a “third party” specified by the requestor.

In many cases, the client of ALE will be software that acts as an EPCIS Capturing
Application (see Section 2) or other business processing software. Since EPCIS is
another component of the EPCglobal Architecture Framework that deals with higher-
level EPC events, it is helpful to understand how ALE differs from EPCIS and other
software at higher levels of the architecture. The principal differences are:

• The ALE interface is exclusively oriented towards real-time processing of EPC data, 547
with no persistent storage of EPC data required by the interface (though
implementations may employ persistent storage to provide resilience to failures).
Business applications, in contrast, typically deal explicitly with historical data and
hence are inherently persistent in nature.

• The events communicated through the ALE interface are pure statements of “what, 552
where, and when,” with no business semantics expressed. Business applications, and
typically EPCIS-level data, does embed business semantics at some level. For
example, at the ALE level, there might be an event that says “at location L, in the
time interval T1–T2, the following 100 case-level EPCs and one pallet-level EPC
were read.” Within a business application, the corresponding statement might be “at
location L, at time T2, it was confirmed that the following 100 cases were aggregated
onto the following pallet.” The business-level event, while containing essentially the
same EPC data as the ALE event, is at a semantically higher level because it
incorporates an understanding of the business process in which the EPC data were
obtained.

The distinction between the ALE and EPCIS/business layers is useful because it separates
concerns. The ALE layer is concerned with dealing with the mechanics of data
gathering, and of filtering down to meaningful events that are a suitable starting point for

 Copyright © 2004–2009 EPCglobal®, All Rights Reserved. Page 19 of 229

interpretation by business logic. Business layers are concerned with business process,
and recording events that can serve as the basis for a wide variety of enterprise-level
information processing tasks. Within this general framework, there is room for many
different approaches to designing systems to meet particular business goals, and it is
expected that there will not necessarily be one “right” way to construct systems. Thus,
the focus in this specification is not on a particular system architecture, but on creating a
very well defined interface that will be useful within a variety of designs.

566
567
568
569
570
571
572

573
574
575
576
577
578
579
580

582

583
584
585
586
587
588
589
590
591
592

For convenience, the ALE specification is divided into two parts. This Part I specifies at
an abstract level all interfaces that are part of the ALE specification, using UML notation.
Part II of the specification [ALE1.1Part2] specifies XML-based wire protocol bindings of
the interfaces, including XSD schemas for all data types, WS-I compliant WSDL
definitions of SOAP bindings of the service interfaces, and several XML-based bindings
of callback interfaces used in certain modes of reading and writing data.
Implementations may provide additional bindings of the API, including bindings to
particular programming languages.

2 Role Within the EPCglobal Network Architecture 581
 [Much of the text in this section is adapted from [EPCAF], Section 8.]

The diagram below shows the relationships between several EPCglobal Standards, from a
data flow perspective. The plain green bars in the diagram below denote interfaces
governed by EPCglobal standards, while the blue “shadowed” boxes denote roles played
by hardware and software components of a typical system architecture. In any given
deployment the mapping of roles in this diagram to actual hardware and software
components may not be one-to-one. For example, in one deployment the “Filtering and
Collection” role may be implemented by a software component and the “RFID Reader”
role implemented by a hardware component. In another deployment, a “smart reader”
may combine the “Filtering and Collection” role and the “RFID Reader” role into a single
hardware component.

 Copyright © 2004–2009 EPCglobal®, All Rights Reserved. Page 20 of 229

 593
594
595
596
597
598

Consider a typical use case involving the reading of RFID Tags. Several processing steps
are shown in the figure, each mediated by an EPCglobal standard interface. At each step
progressing from raw tag reads at the bottom to EPCIS data at the top, the semantic
content of the data is enriched. Following the data flow from the bottom of the figure to
the top:

• Readers Make multiple observations of RFID tags while they are in the read zone. 599

EPCIS Capture Interface

EPCIS
Repository

Filtering & Collection (ALE) Interface

EPCIS Capturing
Application

Reader Interface

Filtering & Collection

EPCIS Query Interface

EPCIS Accessing
Application

Tag Protocol (UHF Class 1 Gen 2, et al)

RFID Reader
Reader

Management
Interface

Reader
Management

“Pull” or “Push”mode

EPCglobal Subscriber

Optional
bypass for
real-time

“push”

From/to
partners

= HW/SW Role

= Interface (EPCglobal
Standard)

Key

 Copyright © 2004–2009 EPCglobal®, All Rights Reserved. Page 21 of 229

• Reader Interface Defines the control and delivery of raw tag reads from Readers to 600
the Filtering & Collection role. Events at this interface say “Reader A saw EPC X at
time T.”

601
602

604
605

607
608
609
610

612
613
614
615
616
617
618
619
620
621
622
623
624
625
626

628
629
630
631

633
634

636
637

638
639
640

• Filtering & Collection This role filters and collects raw tag reads, over time intervals 603
delimited by events defined by the EPCIS Capturing Application (e.g. tripping a
motion detector).

• Filtering & Collection (ALE) Interface Defines the control and delivery of filtered 606
and collected tag read data from Filtering & Collection role to the EPCIS Capturing
Application role. Events at this interface say “At Location L, between time T1 and
T2, the following EPCs were observed,” where the list of EPCs has no duplicates and
has been filtered by criteria defined by the EPCIS Capturing Application.

• EPCIS Capturing Application Supervises the operation of the lower EPC elements, 611
and provides business context by coordinating with other sources of information
involved in executing a particular step of a business process. The EPCIS Capturing
Application may, for example, coordinate a conveyor system with Filtering &
Collection events, may check for exceptional conditions and take corrective action
(e.g., diverting a bad case into a rework area), may present information to a human
operator, and so on. The EPCIS Capturing Application understands the business
process step or steps during which EPCIS data capture takes place. This role may be
complex, involving the association of multiple Filtering & Collection events with one
or more business events, as in the loading of a shipment. Or it may be
straightforward, as in an inventory business process where there may be “smart
shelves” deployed that generate periodic observations about objects that enter or
leave the shelf. Here, the Filtering & Collection-level event and the EPCIS-level
event may be so similar that no actual processing at the EPCIS Capturing Application
level is necessary, and the EPCIS Capturing Application merely configures and routes
events from the Filtering & Collection interface directly to an EPCIS Repository.

• EPCIS Capture Interface The interface through which EPCIS data is delivered to 627
enterprise-level roles, including EPCIS Repositories, EPCIS Accessing Applications,
and data exchange with partners. Events at this interface say, for example, “At
location X, at time T, the following contained objects (cases) were verified as being
aggregated to the following containing object (pallet).”

• EPCIS Accessing Application Responsible for carrying out overall enterprise 632
business processes, such as warehouse management, shipping and receiving,
historical throughput analysis, and so forth, aided by EPC-related data.

• EPCIS Repository Records EPCIS-level events generated by one or more EPCIS 635
Capturing Applications, and makes them available for later query by EPCIS
Accessing Applications.

The interfaces within this stack are designed to insulate the higher levels of the stack
from unnecessary details of how the lower levels are implemented. One way to
understand this is to consider what happens if certain changes are made:

 Copyright © 2004–2009 EPCglobal®, All Rights Reserved. Page 22 of 229

• The Reader Interface insulates the higher layers from knowing what reader 641
makes/models have been chosen. If a different reader is substituted, the information
at the Reader Interface remains the same. The Reader Interface may, to some extent,
also provide insulation from knowing what tag protocols are in use, though obviously
not when one tag type or tag protocol provides fundamentally different functionality
from another.

642
643
644
645
646

648
649
650
651
652
653

655
656
657
658
659
660
661
662
663
664
665
666

667
668
669

670
671
672
673
674
675
676
677
678
679
680

• The Filtering & Collection (ALE) Interface insulates the higher layers from the 647
physical design choices made regarding how tags are sensed and accumulated, and
how the time boundaries of events are triggered. If a single four-antenna reader is
replaced by a constellation of five single-antenna “smart antenna” readers, the events
at the Filtering & Collection level remain the same. Likewise, if a different triggering
mechanism is used to mark the start and end of the time interval over which reads are
accumulated, the Filtering & Collection event remains the same.

• The EPCIS interfaces insulate enterprise applications from understanding the details 654
of how individual steps in a business process are carried out at a detailed level. For
example, a typical EPCIS event is “At location X, at time T, the following cases were
verified as being on the following pallet.” In a conveyor-based business
implementation, this likely corresponds to a single Filtering & Collection event, in
which reads are accumulated during a time interval whose start and end is triggered
by the case crossing electric eyes surrounding a reader mounted on the conveyor. But
another implementation could involve three strong people who move around the cases
and use hand-held readers to read the EPC codes. At the Filtering & Collection level,
this looks very different (each triggering of the hand-held reader is likely a distinct
Filtering & Collection event), and the processing done by the EPCIS Capturing
Application is quite different (perhaps involving an interactive console that the people
use to verify their work). But the EPCIS event is still the same.

In summary, the different steps in the data path correspond to different semantic levels,
and serve to insulate different concerns from one another as data moves up from raw tag
reads towards EPCIS.

The discussion above illustrated the relationships using a tag reading example, in which
the flow of data was essentially one-way from the bottom of the diagram towards the top.
Other scenarios, such as tag writing scenarios, may involve different directions of data
flow, but the abstraction levels represented by the interfaces remain the same. For
example, a manufacturing application may involve a step where a product bar code is
read and an RFID tag written based on information read from the bar code. In that case,
the “EPCIS Capturing Application” is responsible for coordinating the bar code read and
the RFID tag write operations, each of which may involve a single event at the ALE
level, which in turn correspond to multiple events at the lower levels. The essential role
of ALE of insulating the capturing application from the physical details of how reads and
writes are carried out remains the same.

 Copyright © 2004–2009 EPCglobal®, All Rights Reserved. Page 23 of 229

3 Terminology and Typographical Conventions 681
Within this specification, the terms SHALL, SHALL NOT, SHOULD, SHOULD NOT,
MAY, NEED NOT, CAN, and CANNOT are to be interpreted as specified in Annex G of
the ISO/IEC Directives, Part 2, 2001, 4th edition [ISODir2]. When used in this way,
these terms will always be shown in ALL CAPS; when these words appear in ordinary
typeface they are intended to have their ordinary English meaning.

682
683
684
685
686

687
688

689

692

694
695

697

All sections of this document, with the exception of Section 1 and Section 2, are
normative, except where explicitly noted as non-normative.

The following typographical conventions are used throughout the document:

• ALL CAPS type is used for the special terms from [ISODir2] enumerated above. 690

• Monospace type is used to denote programming language, UML, and XML 691
identifiers, as well as for the text of XML documents.

 Placeholders for changes that need to be made to this document prior to its reaching 693
the final stage of approved EPCglobal specification are prefixed by a rightward-
facing arrowhead, as this paragraph is.

4 ALE Interfaces 696
The ALE specification defines five interfaces, as defined below.

Interface Description Normative
Sections of This

Document

Reading API An interface through which clients may obtain
filtered, consolidated EPC and other data from a
variety of sources. In particular, clients may
read RFID tags using RFID readers.

Sections 5, 6, 8

Writing API An interface through which clients may cause
operations to be performed on EPC data carriers
through a variety of actuators. In particular,
clients may write RFID tags using RFID
“readers” (capable of writing tags) and printers.

Sections 5, 6, 9

Tag Memory
Specification API

An interface through which clients may define
symbolic names that refer to data fields of tags.

Section 7

Logical Reader
Configuration API

An interface through which clients may define
logical reader names for use with the Reading
API and the Writing API, each of which maps
to one or more sources/actuators provided by
the implementation.

Section 10

 Copyright © 2004–2009 EPCglobal®, All Rights Reserved. Page 24 of 229

Interface Description Normative
Sections of This

Document

Access Control
API

An interface through which clients may define
the access rights of other clients to use the
facilities provided by the other APIs.

Section 11

Table 1. ALE APIs 698
699
700
701
702
703
704
705
706
707

To comply with this specification, an implementation of a given ALE API SHALL fully
implement that API according to this specification. The specification permits a system
component to include mutually related implementations of more than one ALE API. In
the remainder of this document, the phrase “ALE implementation” refers to an
implementation of one of the five ALE APIs, or to related implementations of two or
more ALE APIs, the specific APIs involved being evident from the context in which the
phrase is used. Accordingly, due to the manner in which the ALE 1.1 Specification is
written, necessary implementations include any of the individual APIs and any and all
combinations of APIs permitted under the ALE 1.1 Specification.

Explanation (non-normative): The ALE specification is designed to be applicable to a 708
wide variety of implementations, including full-featured “middleware” software that 709
controls multiple devices, as well as embedded implementations that provide only limited 710
functionality. For example, there may be an implementation of the ALE Reading API 711
embedded on a reader device that is only capable of reading tags, not writing them. Such 712
an implementation has no need to provide the Writing API. Likewise, an implementation 713
embedded on a single-antenna RFID reader is not likely to need the facilities of the 714
Logical Reader Configuration API. 715

716

718
719
720

721
722

The remaining sections of this document specify these interfaces.

4.1 UML Notation for APIs 717
In each of sections noted in the table above, an API is described abstractly using UML
class diagram notation. An implementation of an API is realized through one or more
bindings of the UML to a specific implementation technology and message syntax.

The class notation used for the abstract UML specifications of classes and interfaces is
illustrated below:

 Copyright © 2004–2009 EPCglobal®, All Rights Reserved. Page 25 of 229

ClassName 723
dataMember1 : Type1 724
dataMember2 : Type2 725
--- 726
method1(ArgName:ArgType, ArgName:ArgType, …) : ReturnType 727
method2(ArgName:ArgType, ArgName:ArgType, …) : ReturnType 728

729
730
731
732
733

734
735
736
737
738
739
740

742
743
744
745
746

747
748
749
750
751
752
753
754
755
756

758

Data members are indicated above the dividing line (“---“), while interface methods are
defined below the dividing line. In general, each API specifies an interface (marked with
the <<interface>> stereotype) containing only methods. The methods in turn may
use complex types as arguments or return types. Each complex type is specified by a
class containing only data members.

Within the UML descriptions, the notation <<extension point>> identifies a place
where implementations MAY add an extension, in compliance with this specification,
through vendor specific additions of new data members or methods. The exact
mechanism for extensibility is binding-specific. The extensibility mechanism provided
by all bindings provides for both proprietary extensions by vendors of ALE-compliant
products, and for extensions defined by EPCglobal through future versions of this
specification or through new specifications.

4.2 API Interaction 741
The general interaction model for each API is that there are one or more clients that make
method calls to an interface class corresponding to an API, where the interface class is
specified in one of the sections given in the table above. Each method call is a request,
which causes the ALE implementation to take some action and return results. Thus,
methods of each API are synchronous.

The Reading API and Writing API also provides a way for clients to subscribe to events
that are delivered asynchronously. This is done through methods that take a
notificationURI as an argument. Such methods return immediately, but
subsequently the ALE implementation may asynchronously deliver information to the
consumer denoted by the notificationURI. Formally, the path for asynchronous
delivery is denoted by a “callback” interface. Different ALE implementations typically
provide a variety of bindings of the Reading API or Writing API callback interface (e.g.,
HTTP, file, e-mail, message bus, SOAP, etc.); this is intended to be a point of
extensibility. Part II specifies bindings that are standardized, and specify the
conformance requirement (MAY, SHOULD, SHALL) for each.

4.3 Version Introspection Methods 757
Each of the five APIs includes a pair of methods having the following signature:

 Copyright © 2004–2009 EPCglobal®, All Rights Reserved. Page 26 of 229

--- 759
getStandardVersion() : String 760
getVendorVersion() : String 761

762
763

An ALE implementation SHALL implement these methods as specified in the following
table:

Method Description
getStandardVersion Returns a string that identifies what version of the

specification this implementation of the API complies
with. The possible values for this string are defined by
EPCglobal. An implementation SHALL return a string
corresponding to a version of this specification to which
the API implementation fully complies, and SHOULD
return the string corresponding to the latest version to
which it complies. To indicate compliance with this
Version 1.1 of the ALE specification, the
implementation SHALL return the string 1.1.

getVendorVersion Returns a string that identifies what vendor extensions
of the API this implementation provides. The possible
values of this string and their meanings are vendor-
defined, except that the empty string SHALL indicate
that the implementation implements only standard
functionality of the API with no vendor extensions.
When an implementation chooses to return a non-empty
string, the value returned SHALL be a URI where the
vendor is the owning authority. For example, this may
be an HTTP URL whose authority portion is an Internet
domain name owned by the vendor, a URN having a
URN namespace identifier issued to the vendor by
IANA, an OID URN whose initial path is a Private
Enterprise Number assigned to the vendor, etc.

Table 2. Version Introspection Methods 764

765
766
767
768
769
770
771
772
773

Each of the five APIs defined in this specification includes a getStandardVersion
and a getVendorVersion method. The result returned by each method SHALL only
pertain to the API to which it belongs. For example, a system component might include
an implementation of the Reading API that returns the string 1.0 from the
getStandardVersion method, and an implementation of the Writing API that
returns the string 1.1 from the getStandardVersion method. This would indicate
that the system component’s Reading API implementation complies with the ALE 1.0
specification but not the ALE 1.1 specification, while the Writing API implementation
does comply with the ALE 1.1 specification.

 Copyright © 2004–2009 EPCglobal®, All Rights Reserved. Page 27 of 229

4.4 Classes Common to the Reading and Writing APIs 774
The following seven classes are used by both the Reading API and the Writing API.
While their names begin with the EC prefix used for Reading API classes, they should be
understood as belonging equally to the Reading API and the Writing API.

775
776
777

Class Specified in Section
ECTime 8.2.2
ECTimeUnit 8.2.3
ECTrigger 8.2.4
ECFilterListMember 8.2.8
ECFieldSpec 8.2.12
ECReaderStat 8.3.10
ECSightingStat 8.3.11

Table 3. Classes Common to the Reading and Writing APIs 778

780
781
782
783

784
785
786
787

788
789
790
791
792
793
794
795
796
797
798
799

800
801
802
803

4.5 Interpretation of Names 779
There are several places in the ALE APIs where an ALE client specifies a name to refer
to an entity with which the API is concerned. For example, in the ALE Reading API, a
client specifies an ECSpec name to refer to an event cycle specification (ECSpec). This
section specifies treatment of names that applies to all places where names are used.

Except as noted elsewhere in this specification, an ALE implementation SHALL accept
as a name any non-empty string of Unicode characters that does not include
Pattern_White_Space or Pattern_Syntax characters (as those classes are defined in
[Unicode]). An ALE implementation MAY accept other non-empty strings as well.

In many situations, a client provides a name to an ALE API in order to refer to an entity
previously defined. This implies that an ALE implementation is called upon to recognize
that a name specified by a client is the same as a name previously specified. For the
purposes of the following sentence, these two names are referred to as the “specified
name” and the “previously specified name,” respectively. An ALE implementation
SHALL consider the specified name equivalent to the previously specified name if it is
an identical sequence of Unicode characters, MAY consider the specified name
equivalent to the previously specified name if they are canonical-equivalent sequences
(as the term “canonical-equivalent sequence” is defined in [Unicode]), and SHALL NOT
consider the specified name equivalent to the previously specified name if they are not
canonical equivalent sequences (except in situations of aliasing explicitly noted
elsewhere in this specification).

In other situations, an ALE implementation returns a value to an ALE client that includes
a name previously specified by an ALE client. In such situations, the name included in
the returned value SHOULD be the identical sequence of Unicode characters as
previously specified by the client, but MAY be a canonical-equivalent sequence.

 Copyright © 2004–2009 EPCglobal®, All Rights Reserved. Page 28 of 229

Explanation (non-normative): The above rules are designed to give ALE clients a 804
minimum set of reasonable behavior on which they can rely, without overly burdening 805
implementations. The rules for construction of names give clients a wide range of strings 806
that are guaranteed to be acceptable, while not requiring implementations to perform 807
any checks (other than the test for non-empty). The rules for equality of names insure 808
that identical strings will be treated as equal and that different strings will be treated as 809
different. Implementations are permitted, but not required, to treat different yet 810
canonical-equivalent sequences as equal; this means that implementations do not 811
necessarily have to understand Unicode rules for combining marks. A consequence of 812
these rules is that identifiers are treated as case-sensitive. 813

815
816
817
818
819
820
821

4.6 Scoping of Names 814
Names as discussed in Section 4.5 exist within a namespace; the names within one
namespace are unrelated to the names in other namespaces. An ALE implementation
SHALL permit the same string to be used as a name in more than one namespace. The
following table enumerates all namespaces that are implied by the ALE APIs. In the
table below, the “global” scope refers to the ALE implementation as viewed by any one
client; it is implementation-defined whether or not global namespaces are shared among
different clients.

Explanation (non-normative): The last sentence allows different implementations to take 822
different positions as to whether different users share data or not. 823

Namespace Section Scope

Fieldname 6, 7 Global

TMSpec name 7 Global

ECSpec name 8 Global

ECReport name 8.2.5 Enclosing ECSpec

CCSpec name 9 Global

CCCmdSpec name 9.3.2 Enclosing CCSpec

EPC Cache name 9.5 Global

Association Table name 9.6 Global

Random Number Generator
name

9.7 Global

Logical Reader name 10 Global

Permission name 11 Global

Role name 11 Global

Client Identity name 11 Global

 824

 Copyright © 2004–2009 EPCglobal®, All Rights Reserved. Page 29 of 229

4.7 Equivalance of Null, Omitted, and Empty String Values, and 825
of Omitted and Empty Lists 826

827
828
829
830
831
832

833
834
835
836
837

838
839
840

842
843

845
846
847
848
849
850
851

852
853
854
855
856
857
858
859
860
861
862
863
864
865

Throughout this specification, data members may be noted as “optional” or “conditional.”
This means that the data member may lack a value in certain circumstances. Each
binding of the ALE APIs provides its own representation for this situation. In some
situations, more than one representation may be available. For example, in the XML
bindings specified in [ALE1.1Part2], an optional data member may be omitted altogether,
or may appear as an XML element or attribute having the empty string as its text content.

Within this specification, the terms “null,” “omitted,” and “empty string” are used
interchangeably to denote an absent value. An implementation SHALL NOT draw any
distinction between “null,” “omitted,” and “empty string.” If a binding provides more
than one representation as illustrated above, the ALE implementation SHALL treat them
as equivalent.

Similarly, an implementation SHALL NOT draw any distinction between an omitted list
and a list containing zero elements. If a binding provides more than one representation
for this situation, the ALE implementation SHALL treat them as equivalent.

5 ALE Concepts and Principles of Operation 841
This section describes the concepts and principles of operation that underlie the
specification of the ALE Reading API and the ALE Writing API.

5.1 Fundamental ALE Concepts 844
The purpose of the ALE interface is to allow business applications to read and operate
upon tags. While ALE was primarily conceived and developed in the context of RFID
tags, the interface is designed to be general enough to accommodate other kinds of data
carriers, such as bar codes, OCR text, and in some instances even human interaction
through a keyboard or display. Within this specification, the term “Tag” refers to a data
carrier of this kind; that is, to an RFID tag or some other data carrier that can be treated in
a similar manner.

Within this specification, the term “Reader” is used to refer to a channel through which
Tags are accessed. Through a Reader, data may be read from Tags, and in some cases
(depending on the capabilities of the Readers and Tags involved) data may be written to
Tags or other operations performed on Tags. An extremely common type of Reader, of
course, is an actual RFID reader, which accesses RFID tags through an RFID air
interface. But a Reader could just as easily be a bar code reader or even a person typing
on a keyboard (in both of those examples, data may be read but not written). Moreover,
Readers as used in this specification may not necessarily be in one-to-one correspondence
with hardware devices; this is explored in more depth in Section 10. Hence, the term
“Reader” is just a convenient shorthand for “channel for accessing Tags.” When used in
this special sense, the word Reader will always be capitalized. For purposes of
discussion, it will sometimes be necessary to speak of Tags moving within the access
zone of a Reader; while this terminology is directly germane to RFID readers, it should
be obvious what the corresponding meaning would be for other types of Readers.

 Copyright © 2004–2009 EPCglobal®, All Rights Reserved. Page 30 of 229

A reader cycle is the smallest unit of interaction with a Reader. As ALE permits a wide
variety of Readers, the exact nature of a reader cycle is highly dependent on the particular
kind of channel a given Reader represents. For example, for an ALE implementation
embedded in an RFID reader device, the "Reader" is the communication pathway
between the ALE subsystem and the RF protocol subsystem, and a reader cycle might
represent one iteration of the RF protocol used to communicate with RFID tags. Another
example is an ALE implementation provided by middleware software, which
communicates with an outboard RFID reader device through a proprietary wire protocol.
In this case, a reader cycle is a unit of interaction defined by that wire protocol, which
may correspond to one or several RF protocol iterations depending on the design of the
reader device and its wire protocol.

866
867
868
869
870
871
872
873
874
875
876

877
878
879
880
881
882
883
884
885
886

887
888
889
890
891
892
893
894

895
896
897
898
899
900
901
902
903
904
905
906

907
908
909

An event cycle or command cycle is an interval of time over which an ALE
implementation carries out interactions with one or more Readers on behalf of an ALE
client. (“Event cycle” is the term used in the reading API, while “command cycle” is the
term used in the writing API.) It is the smallest unit of interaction between an ALE client
and an ALE implementation. An ALE client describes declaratively what it wants to
accomplish during one or more event cycles, for example “read from readers A and B for
five seconds, and report any tags whose EPCs match the product code for Acme
Widgets.” The event cycle is the five second interval during which the ALE
implementation carries out the client's request (in this example, reading tags from readers
A and B and filtering as specified).

A report is a response sent from the ALE implementation to the ALE client at the
conclusion of an event cycle or command cycle. The report contains information about
what happened during the event cycle or command cycle: information read from Tags
(for an event cycle) or confirmation of Tags written or otherwise manipulated (for a
command cycle). A report is typically sent to the ALE client at the end of each event
cycle or command cycle, although the ALE client may ask that reports be suppressed if
nothing “interesting” occurred during the event cycle or command cycle (e.g., if no tags
were read).

In general, during an event cycle or command cycle an ALE implementation carries out
one or more reader cycles with the designated Readers, and through those reader cycles
carry out the wishes of the ALE client for that event cycle or command cycle. This
specification, however, does not stipulate how an ALE implementation must employ
reader cycles to fulfill ALE client requests. The ALE implementation has wide latitude
to interact with Readers in whatever manner it determines is appropriate, so long as the
net effect as seen by the ALE client conforms to this specification. Likewise, this
specification makes no assumption about the granularity of reader cycles in terms of how
much work is performed in a single reader cycle. With this approach, the ALE
specification recognizes that different kinds of Readers may operate differently, with
wide differences in what a reader cycle is, and hence an ALE implementation may have
to employ different strategies depending on these characteristics.

For these reasons, the ALE APIs specified herein do not expose reader cycles to clients in
any direct way. The APIs are specified by defining event cycles and command cycles as
seen by ALE clients. The only reason that the term reader cycle has been introduced is to

 Copyright © 2004–2009 EPCglobal®, All Rights Reserved. Page 31 of 229

aid in explaining certain aspects of event cycles and command cycles that would be
difficult to explain otherwise.

910
911

913
914
915
916

917
918
919
920
921

923

926
927

929

931
932

933

934

5.2 Event Cycles 912
An event cycle is the smallest unit of interaction between an ALE client and an ALE
implementation through the ALE Reading API. An event cycle is an interval of time
during which Tags are read. At the conclusion of an event cycle, a report is sent to the
ALE client containing information read from the Tags.

As Tags move in and out of the detection zone of a Reader, the tag data reported to the
ALE implementation by the Reader changes. Within an event cycle, the same Tag may
be read several times (if the Tag remains within the detection zone of any of the Readers
specified for that event cycle). An ALE client specifies when an event cycle starts and
stops. An ALE client may specify that an event cycle may:

• Extend for a specified duration (interval of real time); e.g., accumulate reads into 922
five-second intervals.

• Occur periodically; e.g., read for one minute once every 30 minutes. 924

• Be triggered by external events; e.g., an event cycle starts when a pallet on a conveyer 925
triggers an electric eye upstream of a portal, and ends when it crosses a second
electric eye downstream of a portal.

• Be delimited when no new Tags are detected by any Reader specified for that event 928
cycle for a specified interval of time.

• Terminate when any Reader specified for that event cycle reports a new Tag to the 930
ALE implementation, thus delivering data to the ALE client as soon as it is known to
the ALE implementation..

The complete set of available options is specified normatively in Section 8.2.1.

The net picture looks something like this:

 Copyright © 2004–2009 EPCglobal®, All Rights Reserved. Page 32 of 229

 935
936
937
938
939
940
941
942
943
944

945
946
947

948
949
950
951

While the diagram shows reader cycles arising from a single Reader, in practice a given
event cycle may collect reader cycles from more than one Reader. As the diagram
suggests, there may be more than one active event cycle at any point in time. Multiple
active event cycles may start and end with different reader cycles, and may overlap in
arbitrary ways. They may gather data from the same Readers, from different Readers, or
from arbitrarily overlapping sets of Readers. Multiple active event cycles could arise
from one client making several simultaneous requests, or from independent clients. In all
cases, however, the same tag data are shared by all active event cycles that request data
from a given Reader.

The set of Tags in a given reader cycle from a given Reader is denoted by S. In the
picture above, S1 = {Tag1, Tag2, Tag3} and S2 = {Tag1, Tag2, Tag4}. Each Tag, in
turn, is modeled as a tuple of data fields: Tag1 = (Tag1Field1, Tag1Field2, …).

An event cycle is treated as a unit by clients, so clients do not see any of the internal
structure of the event cycle. All that is relevant, therefore, is the complete set of Tags
read in any of the reader cycles that take place during the event cycle, from any of the
Readers in the set specified for the event cycle, with duplicates removed. This is simply
the union of the set of Tags from each reader cycle: E = S1 U S2 U …. In the example
above for Client 1 Event Cycle 1 we have E1.1 = {Tag1, Tag2, Tag3, Tag4, Tag5}.

952
953

954
955

957

ALE Clients get information about event cycles through reports. A report is specified by
a combination of these three parameters:

• What set R to report, which may be 956

• The complete set from the current event cycle R = Ecur; or

Reader Cycle 2 Reader Cycle 3

Tag1
Tag2
Tag3

Tag1
Tag2

Tag4
Tag3

Tag5
Reader Cycle 1

Client 1 Event Cycle 1

Report Report

Reader Cycle 5 Reader Cycle 6

Tag3
Tag4

Tag3

Tag5
Reader Cycle 4

Report

Report

Tag5

Tag3

Tag5
Reader Cycle 7

Tag3

Tag5

Client 2 Event Cycle 1

Client 3
Event

Cycle 1
Client 2 Event Cycle 2

Report

Report

 Copyright © 2004–2009 EPCglobal®, All Rights Reserved. Page 33 of 229

• The differential set that only includes differences of the current event cycle
relative to the previous one (assuming the same event cycle boundaries). This can
be the set of additions R = (Ecur – Eprev) or the set of deletions R = (Eprev –
Ecur), where ‘–’ denotes the set difference operator.

958
959
960
961

963

965
966
967
968

969
970

971

972
973

974

976

977

978

979

981

982
983
984
985
986
987
988

989
990
991
992
993
994
995
996

• An optional filter F(R) to apply, which includes some Tags and excludes others based 962
on the data contained in their fields.

• Whether to report 964

• The members of the set, F(R) (i.e., the tag data themselves), possibly grouped as
described in Section 5.2.1. In this case, the ALE client also specifies which data
fields to report for each Tag, and how the data is to be formatted for consumption
by the client;

• The quantity, or cardinality, of the set |F(R)|, or of the groups making up the set as
described in Section 5.2.1.

The available options are described normatively in Section 8.2.

A client may require more than one report from a given event cycle; e.g., a “smart shelf”
application may require both an additions report and a deletions report.

This all adds up to an ALE Layer API in which the primary interaction is as follows:

1. A client provides to the ALE implementation an event cycle specification (ECSpec), 975
which specifies

• one or more Readers (this is done indirectly, as explained in Section 10)

• event cycle boundaries as illustrated above, and

• a set of reports as defined above

2. The ALE Layer responds by returning the information implied by that report 980
specification for one or more event cycles.

This interaction may take place in a “pull” mode, where the client provides the ECSpec
and the ALE Layer in turn initiates or waits for read events, filters/counts the data, and
returns the report(s). It may also be done in a “push” mode, where the client registers a
subscription to an ECSpec, and thereafter the ALE Layer asynchronously sends reports to
the client when event cycles complete. The complete details of the API, the information
required to specify an event cycle, and the information returned to the client when an
event cycle completes are spelled out in Sections 8.1, 8.2, and 8.3, respectively.

Note that because the filtering operations commute with the set union and difference
operations, there is a great deal of freedom in how an ALE implementation actually
carries out the task of fulfilling a report request. For example, in one implementation,
there may be a Reader that is capable of doing filtering directly within the Reader, while
in a second implementation the Reader may not be capable of filtering and so software
implementing the ALE API must do it. But the ALE API itself need not change – the
client specifies the reports, and the implementation of the API decides where best to carry
out the requested filtering.

 Copyright © 2004–2009 EPCglobal®, All Rights Reserved. Page 34 of 229

A key characteristic of the ALE Reading API is that Tags may be read several times
within an event cycle. This is necessary so that data may be shared between
simultaneous event cycles that share the same Readers but specify different time
boundaries. A fundamental characteristic of event cycles is that duplicate reads are
removed before the data is presented to the ALE client. The formal model expresses this
by defining the Tags S as a set, as opposed to a list. This implies the existence of an
algorithm for determining whether two Tags reported in successive reader cycles are the
“same” for the purposes of duplicate removal. Likewise, the additions and deletions
options for reporting rely on the set difference operator, which also requires comparison
of tag data. This topic is addressed more fully in Section

997
998
999

1000
1001
1002
1003
1004
1005
1006

1008
1009
1010
1011
1012

1013
1014
1015
1016
1017
1018

1019
1020

1021
1022
1023

1024
1025
1026
1027
1028

1029

1031
1032
1033
1034
1035

1036
1037

8.2.

5.2.1 Group Reports 1007
Sometimes it is useful to group Tags read during an event cycle based on portions of the
EPC or other fields. For example, in a shipment receipt verification application using
SGTIN EPCs, it is useful to know the quantity of each type of case (i.e., each distinct
case GTIN), but not necessarily the serial number of each case. This requires slightly
more complex processing, based on the notion of a grouping operator.

A grouping operator is a function G that maps tag data into some sort of group code g.
For example, a grouping operator might map the EPC field of a tag into a GTIN group, or
simply into the upper bits (manufacturer and product) of the EPC. Other grouping
operators might be based on other information available on a tag, such as the filter code
that implies the type of object (i.e., pallet, case, item, etc.), a lot code in a field of user
memory, and so on.

The notation S↓g means the subset of Tags s1, s2, … in the set S that belong to group g.
That is, S↓g ≡ { s in S | G(s) = g }.

A group membership report for grouping operator G is a set of pairs, where the first
element in each pair is a group name g, and the second element is the list of EPCs that
fall into that group, i.e., S↓g.

A group cardinality report is similar, but instead of enumerating the EPCs in each group,
the group cardinality report just reports how many of each there are. That is, the group
cardinality report for grouping operator G is a set of pairs, where the first element in each
pair is a group name g, and the second element is the number of EPCs that fall into that
group, i.e., |S↓g|.

Formally, then, the reporting options from the last section are:

• Whether to report 1030

• A group membership (group list) report for one or more specified grouping
operators Gi, which may include, and may possibly be limited to, the default
(unnamed) group. In mathematical notation: { (g, F(R)↓g) | F(R)↓g is non-empty
}. In this case, the ALE client also specifies which data fields to report for each
Tag, and how the data is to be formatted for consumption by the client.

• A group cardinality (group count) report for one or more specified grouping
operators Gi, which may include, and may possibly be limited to, the default

 Copyright © 2004–2009 EPCglobal®, All Rights Reserved. Page 35 of 229

1038
1039

1041
1042
1043
1044
1045
1046

1047
1048
1049
1050

1051

1052
1053
1054

1055
1056

1058

(unnamed) group. In mathematical notation: { (g, |F(R)↓g|) | F(R)↓g is non-
empty }.

5.3 Command Cycles 1040
A command cycle is the smallest unit of interaction between an ALE client and an ALE
implementation through the ALE Writing API. A command cycle is an interval of time
during which Tags are written, or other operations performed upon them (e.g., the “kill”
and “lock” operations available for UHF Class 1 Gen 2 RFID tags). At the conclusion of
a command cycle, a report is sent to the ALE client containing information about what
tags were operated upon and what the results were.

As in an event cycle, the ALE client specifies when a command cycle starts and stops.
During the command cycle, the ALE implementation uses one or more Readers to
operate upon Tags that fall within the detection zone of the Readers. The implementation
makes best efforts to acquire and operate on each Tag exactly once.

The net picture looks something like this:

While the diagram shows command cycles each using a single Reader, in practice a given
command cycle may use more than one Reader to acquire tags.

The interaction between an ALE client and an ALE implementation through the Writing
API is similar to the description of the Reading API from the last section. Namely,

1. A client provides to the ALE implementation a command cycle specification 1057
(CCSpec), which specifies

Reader Cycle 2 Reader Cycle 3

Tag1
Tag2
Tag3

[Tag1]
Tag4

Tag5
Tag6

Tag7
Reader Cycle 1

Client 1 Command Cycle 1

Report

Reader Cycle 5 Reader Cycle 6

Tag3
Tag10

Tag12

Tag13
Reader Cycle 4

Tag8

Tag9

Tag11
Reader Cycle 7

Tag14

Tag15

Client 2 Cmd Cycle 1

Report

Report

Report

 Client 1 Command Cycle 2

 Copyright © 2004–2009 EPCglobal®, All Rights Reserved. Page 36 of 229

• one or more Readers (this is done indirectly, as explained in Section 10) 1059

1060

1061

1062

1063

1065
1066

1067
1068
1069
1070
1071

1072
1073
1074
1075
1076
1077
1078
1079
1080
1081

1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097

• command cycle boundaries, and

• a set of command lists to apply to Tags. Each command list includes

• a filter that specifies which Tags to operate upon, and

• an ordered list of operations to perform on each Tag that matches the filter.

2. The ALE Layer responds by carrying out the operations on Tags, and returning a 1064
report that describes what Tags were encountered and what processing was performed
upon them.

As in the Reading API, this interaction may take place in a “pull” mode, where the client
provides the CCSpec and the ALE Layer in turn carries out Tag operations and returns
the report(s). It may also be done in a “push” mode, where the client registers a
subscription to a CCSpec, and thereafter the ALE Layer asynchronously sends reports to
the client when command cycles complete.

A key difference between event cycles and command cycles is the way that simultaneous
use of the same Readers is treated, and the implications upon the way implementations
are expected to acquire Tags. Event cycles only read Tags, without changing their
contents or performing other side-effects upon them. Hence, it is possible for several
simultaneously active event cycles to share the result of a single reader cycle, and an
ALE implementation MAY share reader cycles in this way. Because simultaneous event
cycles may have different boundaries, it MAY be necessary for the ALE implementation
to read a given Tag more than once. Duplicate detection is done on the basis of data read
from the Tag; an event cycle specification indicates which fields of Tag data are to be
used for this purpose.

In contrast, command cycles may write Tags and perform other side-effects such as
killing or locking. Because a command cycle changes the data on a Tag, using Tag data
itself may not be a reliable method to determine duplicates. Instead, an ALE
implementation SHOULD use other means to singulate tags within a command cycle.
For example, Gen2 RFID Tags have inventory flags which can be used. Simultaneous
command cycles are permitted in the ALE Writing API, but it is not expected that reader
cycles will be shared. This is both because simultaneous command cycles are likely to be
operating upon disjoint sets of Tags or performing disjoint operations on them, and
because each command cycle may need to do its own bookkeeping to avoid duplicates
(e.g., in Gen2 two simultaneous command cycles could use different sessions for
singulation). Therefore, while any command cycles are active it is expected that each
Reader will be dedicated to a single command cycle (or the set of all event cycles) during
any given reader cycle. The ALE implementation MAY apply whatever rules it wishes
to determine which command or event cycles get access to a Reader during any reader
cycle. In the illustration above, for example, Client 2 Command Cycle 1 has pre-empted
the use of the Reader by Client 1 Command Cycle 2 for the entire duration of the former.

 Copyright © 2004–2009 EPCglobal®, All Rights Reserved. Page 37 of 229

5.4 Tag Data Model 1098
From the perspective of an ALE client, the data on a Tag is considered to consist of one
or more data fields. When an ALE client describes an event cycle or a command cycle,
for each data field it wants to operate upon the client must specify a fieldspec. A
fieldspec specifies three things:

1099
1100
1101
1102

1105

1107
1108
1109

1110

• A fieldname, which specifies which data field of the Tag to operate upon. 1103

• The datatype, which specifies what kind of data values that field is considered to 1104
contain, and how they are encoded into the Tag memory

• A format, which specifies the syntax by which individual data values are presented at 1106
the level of the ALE API (that is, the format of data values as reported by the ALE
API when fields are read, and the format of data values provided by the ALE client to
the ALE API as input to a write operation or a filtering specification).

The following table gives examples to illustrate these concepts:

Fieldname Datatype Format

Bits 0-15 of the User
Memory bank (bank 11)

Integer, encoded in two’s
complement binary with the
least significant bit in bit 15

Decimal numeral, with no
leading zeros and an
optional minus sign.

Alternately, a hexadecimal
numeral.

The EPC bank of a Gen2
tag, according to
Section 3.2 of the EPC Tag
Data Standards

An EPC, encoded according
to Section 3 of the EPC Tag
Data Standards

A tag URI as defined in
Section 4 of the EPC Tag
Data Standards.

Alternately, a raw Hex URI
as defined in Section 4.3.9
of the EPC Tag Data
Standards

The field with OID 12345
in user memory of a Gen2
tag that is encoded
according to ISO 15962

A timestamp, encoded as
seconds since Midnight
GMT January 1, 1970.

An ISO-8601 compliant
string of the form yyyy-
mm-ddThh:mm:ss[TZ]

Table 4. Illustration of Fieldname, Datatype, and Format 1111
1112
1113

1114
1115
1116
1117
1118

1119

As the above table suggests, there might be more than one format that is usable with a
given data type.

The ALE API is intended to provide high-level access to memory fields in a way that
shields ALE clients from being concerned with low-level details of how memory fields
are arranged and compacted into Tag memory. In general, there are two broad classes of
fields. A field that occupies a fixed location in Tag memory is a fixed field. A field that
does not occupy a fixed location or that may be absent is a variable field.

The ALE API provides three kinds of fieldnames:

 Copyright © 2004–2009 EPCglobal®, All Rights Reserved. Page 38 of 229

• Fixed-address fieldnames of the form @bank.length[.offset], where bank, 1120
length, and offset are integers. A fieldname of this form specifies a fixed field
comprising length contiguous bits, starting at fixed bit location offset within
bank bank of tag memory. Fieldnames of this form are specified in detail in
Section

1121
1122
1123
1124

1126
1127
1128

1130

1131
1132

1133
1134
1135
1136
1137
1138
1139

1140
1141
1142
1143

1144
1145
1146
1147
1148
1149
1150

1152
1153
1154
1155
1156
1157
1158
1159

6.1.9.1.

• Variable fieldnames of the form @bank.oid, where bank is an integer and oid is 1125
an object identifier expressed as a URN according to [RFC3061]. A fieldname of this
form specifies a variable field encoded according to ISO 15962 [ISO15962].
Fieldnames of this form are specified in detail in Section 6.1.9.2.

• A symbolic fieldname that is a user- or implementation-defined string, not beginning 1129
with an atsign (@) character. Within this category, there are four variants:

• A symbolic fieldname may be one of the standardized names defined in
Section 6.1.

• A symbolic fieldname may be defined by the ALE client using the
TMFixedFieldListSpec of the Tag Memory API (Section 6.2.3). This form
allows an ALE client to define one or more symbolic names that are equivalent to
fixed field fieldnames of the form @bank.length[.offset]. By assigning
symbolic fieldnames that are meaningful to an application, applications that
define event cycles and command cycles through the ALE API are insulated from
knowing exactly how fields are laid out in tag memory.

• A symbolic fieldname may be defined by the ALE client using the
TMVariableFieldListSpec of the Tag Memory API (Section 7). This
form allows an ALE client to define one or more symbolic names that are
equivalent to variable fieldnames of the form @bank.oid.

• A symbolic fieldname may be defined by the ALE client using a vendor extension
to the Tag Memory API (Section 7). Through vendor extension, ALE
implementations MAY provide more sophisticated ways of mapping symbolic
names to tag memory. In particular, ALE implementations MAY provide for a
single symbolic name to map to a different address in tag memory depending on
the type of Tag being accessed. An ALE implementation MAY also provide for
mapping schemes that are either fixed or variable.

5.4.1 Default Datatype and Format 1151
A given fieldname always implies a default datatype and a default format. In the ALE
Reading API and the ALE Writing API, an ALE client may refer to a fieldname without
explicitly providing a datatype or format, in which case the default datatype and format
are used. The ALE client may, however, supply an explicit datatype or format that
overrides the default. For a fieldname of the form @bank.length[.offset], the
default datatype is unsigned integer and the default format is hexadecimal as defined in
Section 6.2.2. For a fieldname of the form @bank.oid, the default datatype is iso-
15962-string and the default format is string as defined in Section 6.2.3. For a

 Copyright © 2004–2009 EPCglobal®, All Rights Reserved. Page 39 of 229

symbolic fieldname, the default datatype and format are specified when the symbolic
name is defined.

1160
1161

1163
1164
1165
1166

1168
1169

1171

1173
1174

1176

1177
1178

1179
1180
1181
1182
1183
1184
1185

1186
1187
1188
1189
1190
1191
1192

1193

1195

1197
1198

5.4.2 “Field Not Found” Condition 1162
When an ALE implementation accesses a particular Tag during an event cycle or
command cycle, it may be that the Tag does not have a field that is specified in the
governing ECSpec or CCSpec. This is called a “field not found” condition. A “field not
found” condition can arise for several reasons. For example:

• A field is defined to be at a fixed offset within a specific bank of Tag memory, but the 1167
Tag being accessed does not have that bank or the size of the bank does not extend as
far as the field’s offset.

• A field is only defined for certain Tag types. For example, a field in the “user 1170
memory” bank, which is not defined for a Gen1 tag.

• A field is defined to be at a variable position in a scheme that encodes fields as a 1172
series of name/value pairs, and the specified field does not exist among the fields
encoded in Tag memory.

• A field is defined to be at a variable position using a directory-based scheme, and the 1175
tag’s directory lacks an entry for the specified field.

The definition of each fieldname specifies the conditions under which a “field not found”
condition occurs.

A fixed field, as defined above, is defined to occupy a fixed location within Tag memory.
Therefore, a fixed field always exists as long as the memory bank exists and is of
sufficient size. A variable field, on the other hand, may or may not exist depending on
the contents of memory. In addition to “read” and “write” operations, the ALE Writing
API also supports “add” and “delete” operations on variable fields. A “delete” operation
on a variable field will cause subsequent operations to result in a “field not found”
condition.

In addition, variable fields may require certain information to be present in Tag memory
locations other than the field itself. For example, a directory-based encoding scheme
may require a directory to be present before any fields may be accessed. An “initialize”
operation is provided to put the Tag memory into a state where such fields may be added,
read, written, or otherwise operated upon. For fields that require initialization, an attempt
to access such fields if the Tag memory has not been properly initialized will result in a
“field not found” condition.

A “field not found” condition results in the following behavior in the Reading API:

• If the field was included in the primaryKeyFields list, it causes the Tag to be 1194
omitted from the event cycle.

• If the field was included in an ECFilterSpec, it is treated as a failure to match the 1196
pattern; that is, it causes the Tag to fail an INCLUDE filter or pass an EXCLUDE
filter.

 Copyright © 2004–2009 EPCglobal®, All Rights Reserved. Page 40 of 229

• If the field was included in an ECGroupSpec, it causes the Tag to be assigned to the 1199
default group. 1200

1202

1203

1205
1206

1208

1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223

1224
1225

1227

1229
1230

1232

1234

1235
1236

• If the field was included in an ECReportOutputSpec, it causes the value to be 1201
reported as null.

A “field not found” condition results in the following behavior in the Writing API:

• If the field was included in an ECFilterSpec, it is treated as a failure to match the 1204
pattern; that is, it causes the Tag to fail an INCLUDE filter or pass an EXCLUDE
filter.

• If the field was included in a CCOpSpec, it causes the operation to be reported with a 1207
FIELD_NOT_FOUND_ERROR status code.

5.4.3 “Operation Not Possible” Condition 1209
When an ALE implementation accesses a particular Tag during an event cycle or
command cycle, it may be that the Tag has a field that is specified in the governing
ECSpec or CCSpec, but that the Tag does not support performing the requested operation
on that field. This is called an “operation not possible” condition. For example, Gen2
RFID Tags only support the locking of an entire bank of memory, so an attempt to lock a
field that maps to just a subset of a memory bank will result in an “operation not
possible” condition. The definition of each fieldname specifies the conditions under
which an “operation not possible” condition occurs. For the purposes of defining such
conditions, a “read operation” refers not only to an explicit read operation in a CCSpec,
but also the use of a fieldname in any ECSpec or CCSpec context that requires reading
the contents of the field. This includes use of the fieldname in the
primaryKeyFields parameter of an ECSpec (Section 8.2), in an ECFilterSpec
(Section 8.2.7), in an ECGroupSpec (Section 8.2.9), and in an
ECReportOutputSpec (Section 8.2.10).

An “operation not possible” condition results in the following behavior in the Reading
API:

• If the field was included in the primaryKeyFields list, it causes the Tag to be 1226
omitted from the event cycle.

• If the field was included in an ECFilterSpec, it is treated as a failure to match the 1228
pattern; that is, it causes the Tag to fail an INCLUDE filter or pass an EXCLUDE
filter.

• If the field was included in an ECGroupSpec, it causes the Tag to be assigned to the 1231
default group.

• If the field was included in an ECReportOutputSpec, it causes the value to be 1233
reported as null.

An “operation not possible” condition results in the following behavior in the Writing
API:

 Copyright © 2004–2009 EPCglobal®, All Rights Reserved. Page 41 of 229

• If the field was included in an ECFilterSpec, it is treated as a failure to match the 1237
pattern; that is, it causes the Tag to fail an INCLUDE filter or pass an EXCLUDE
filter.

1238
1239

1241

1243
1244
1245
1246
1247
1248

1249
1250
1251
1252

1254
1255
1256
1257
1258
1259

1261
1262
1263
1264
1265

1267
1268
1269
1270

1272
1273

• If the field was included in a CCOpSpec, it causes the operation to be reported with a 1240
OP_NOT_POSSIBLE_ERROR status code.

5.4.4 “Out of Range” Condition 1242
When an ALE implementation writes data to a particular tag during a command cycle, it
may be that the value to be written is a legal value for its datatype, but cannot be encoded
into the specified field. This is called an “out of range” condition. For example, any
nonnegative integer is legal as a value for the uint datatype, but only numbers less than
256 can be encoded in a fixed field of eight bits. An attempt to write the number 500 into
an 8-bit fixed field would raise an “out of range” condition.

If execution of a CCOpSpec results in an “out of range” condition, the operation is
reported with an OUT_OF_RANGE_ERROR status code. Unlike the “field not found” and
“operation not possible” conditions, an “out of range” condition cannot occur merely
because a field is included in an ECFilterSpec, nor in any part of the Reading API.

5.4.5 Pattern Fieldnames 1253
The ALE Reading API permits the client to specify a specific field to be read, or to
specify that a set of related fields are to be read. The latter is specified by the use of a
“pattern fieldname.” When a pattern fieldname is used in a fieldspec, the datatype and
format must be valid for all fields that match the pattern. Pattern fieldnames may only be
used in a fieldspec that occurs as part of a ECReportOutputFieldSpec
(Section 8.2.11)

5.5 Reader Cycle Timing 1260
The ALE API is intentionally silent about the timing of reader cycles. Clients may
specify the boundaries of event cycles and command cycles, which accumulate data from
or manipulate tags during one or more underlying reader cycles, but the API does not
provide a client with explicit control over the frequency at which reader cycles are
completed. There are several reasons for this:

• A client or clients may make simultaneous requests for event cycles that may have 1266
differing event cycle boundaries and different report specifications. In this case,
clients must necessarily share a common view of when and how frequently reader
cycles take place. Specifying the reader cycle frequency outside of any event cycle
request insures that clients cannot make contradictory demands on reader cycles.

• In cases where there are many RFID readers in physical proximity (perhaps 1271
communicating to different ALE implementations), the reader cycle frequency must
be carefully tuned and coordinated to avoid reader interference. This coordination

 Copyright © 2004–2009 EPCglobal®, All Rights Reserved. Page 42 of 229

generally requires physical-level information that generally would be (and should be)
unknown to a client operating at the ALE level.

1274
1275

1277
1278
1279
1280
1281
1282

1283
1284
1285

1286
1287
1288

1290
1291
1292
1293
1294
1295
1296

1297
1298
1299

1300
1301
1302
1303
1304
1305
1306
1307
1308
1309

1310
1311

• The ALE API is designed to provide access to data from a wide variety of “Reader” 1276
sources, which may have very divergent operating principles. If the ALE API were to
provide explicit control over reader cycle timing, it would necessarily make
assumptions about the source of reader cycle data that would limit its applicability.
For example, if the ALE API were to provide a parameter to clients to set the
frequency of reader cycles, it would assume that every Reader provides data on a
fixed, regular schedule.

In light of these considerations, there is no standard way provided by ALE for clients to
control reader cycle timing. Implementations MAY provide different means for this, e.g.,
configuration files, administrative interfaces, and so forth.

Regardless of how a given ALE implementation provides for the configuration of reader
cycle timing, the ALE implementation always has the freedom to suspend Reader activity
during periods when no event cycles or command cycles using a given Reader are active.

5.6 Execution of Event Cycles and Command Cycles 1289
An event cycle specification (ECSpecs) or a command cycle specification (CCSpecs)
comes into existence through a client interacting with the ALE Reading API or the ALE
Writing API, respectively. Once created, an ECspec or CCSpec (hereafter abbreviated to
EC/CCSpec) is subject to a lifecycle that is governed by subsequent client interactions
through the Reading/Writing API as well as events related to the boundary conditions
specified as part of the EC/CCSpec. Event/command cycles occur, and reports are
generated, within the lifecycle of an EC/CCSpec as specified below.

Normative specifications of the ALE Reading API and the ALE Writing API are found in
Sections 8 and 9, respectively. The following is an informal description, to help provide
context for the EC/CCSpec lifecycle state diagrams specified below.

In both the ALE Reading API and the ALE Writing API, there are two ways to create an
event/command cycle. A standing EC/CCSpec may be posted using the define method
of the Reading/Writing API. Subsequently, one or more clients may subscribe to that
EC/CCSpec using the subscribe method. The EC/CCSpec will execute
event/command cycles as long as there is at least one subscriber. A poll call is like
subscribing then unsubscribing immediately after one event/command cycle is completed
(except that the results are returned from poll instead of being sent to a subscriber
asynchronously). The second way to create an EC/CC spec is to post it for immediate
execution using the immediate method. This is roughly equivalent to defining an
EC/CCSpec, performing a single poll operation, and then undefining it.

The lifecycle of EC/CCSpecs is defined with the aid of a state diagram having three
states:

State Description (informal)

 Copyright © 2004–2009 EPCglobal®, All Rights Reserved. Page 43 of 229

State Description (informal)

Unrequested The EC/CCSpec has been defined, but no client has expressed interest
by subscribing or polling.

Requested The EC/CCSpec has at least one client that is interested, but Tags are
not currently being processed for an event/command cycle.

Active Tags are currently being processed for an event/command cycle.

Table 5. EC/CCSpec Lifecycle States 1312

1313
1314
1315
1316
1317
1318

1319
1320

1322
1323
1324
1325
1326

1328

1331
1332

1333
1334
1335

By definition, an EC/CCSpec created by the immediate method cannot be in the
unrequested state. Standing EC/CCSpecs that are requested using subscribe may
transition in and out the active state multiple times. EC/CCSpecs that are requested using
poll or created using immediate will transition in and out of the active state just once
(though in the case of poll, the EC/CCSpec remains defined afterward so that it could
be subsequently polled again or subscribed to).

The complete normative specification of the state transitions is specified in Sections 5.6.1
and 5.6.2, below.

5.6.1 Lifecycle State Transitions for EC/CCSpecs Created by the 1321
Define Method

An EC/CCSpec that is created by a call to the define method of the ALE
Reading/Writing API SHALL begin in the unrequested state, with an empty set of
subscribers. Thereafter, it is subject to state transitions that occur in response to the
following kinds of events:

• Calls to the subscribe, unsubscribe, poll, or undefine methods whose 1327
specName parameter refers to that EC/CCSpec.

• An outstanding poll call being aborted, as provided for in Sections 8.1 and 9.1. 1329

• Event/command cycle starting and stopping conditions, as specified by the 1330
EC/CCSpec. The EC/CCSpec parameters that determine starting and stopping
conditions are defined in Sections 8.2.1 and 9.3.1.

The principal state transitions are illustrated in the diagram below. For clarity, not all
state transitions are shown in the diagram; the tables following the diagram constitute the
normative specification of all state transitions.

 Copyright © 2004–2009 EPCglobal®, All Rights Reserved. Page 44 of 229

 1336
1337
1338
1339
1340
1341
1342

1343

An EC/CCSpec that is created by a call to the define method SHALL be subject to the
state transitions specified in the three tables below. In these tables, “start triggers” and
“repeat period” refer to start condition information that is derived from the EC/CCSpec
as described normatively in Sections 8.2.1 and 9.3.1. It is possible for an EC/CCSpec to
specify no start triggers or to specify no repeat period (though at least one stop condition
must be specified), and this figures into the description of the state transitions.

The following transitions SHALL apply when the EC/CCSpec is in the unrequested state:

Event (when in the
unrequested state)

Action Next state

Call to subscribe The specified subscriber is
added to the set of current
subscribers for the
EC/CCSpec.

Active, if the EC/CCSpec
does not specify any start
triggers; requested
otherwise

Call to poll A new poll call is
outstanding.

Active, if the EC/CCSpec
does not specify any start
triggers; requested
otherwise

Call to undefine All information associated
with the EC/CCSpec,
including the set of current
subscribers, is discarded.

(EC/CCSpec no longer
exists)

Table 6. State Transitions from the Unrequested State 1344
1345 The following transitions SHALL apply when the EC/CCSpec is in the requested state:

Unre-
quested

Re-
quested

Active

define subscribe or poll

unsubscribe of last subscriber and
no outstanding poll requests, or
abort of last poll request and no

subscribers

undefine

Start trigger
received or

repeatPeriod
elapsed

Stopping condition occurs, and
either a start trigger is

specified or the repeat period
has not elapsed

subscribe or poll,
when no start trigger specified

Stop condition reached, and
only requester was poll

 Copyright © 2004–2009 EPCglobal®, All Rights Reserved. Page 45 of 229

Event (when in the
requested state)

Action Next state

Call to subscribe The specified subscriber is
added to the set of current
subscribers for the
EC/CCSpec.

Requested

Call to poll A new poll call is
outstanding.

Requested

Call to unsubscribe The specified subscriber is
removed from the set of
current subscribers for the
EC/CCSpec.

Unrequested, if there are
no more subscribers or
outstanding poll calls;
requested otherwise

An outstanding poll call
is aborted by the ALE
client

The call to poll is no longer
outstanding.

Unrequested, if there are
no more subscribers or
outstanding poll calls;
requested otherwise

Call to undefine For each outstanding poll
call that is a requester of this
EC/CCSpec, a report is
returned having
initiationCondition
set to UNDEFINE,
terminationCondition
set to UNDEFINE, and no
content apart from the
header.

No reports are delivered to
subscribers.

All information associated
with the EC/CCSpec,
including the set of
subscribers, is discarded.

(ECSpec no longer exists)

Arrival of a start trigger An event/command cycle
begins.

Active

 Copyright © 2004–2009 EPCglobal®, All Rights Reserved. Page 46 of 229

Event (when in the
requested state)

Action Next state

The repeat period has
elapsed since the most
recent transition to the
active state (from any other
state), provided there have
been no intervening
transitions to the
unrequested state.

An event/command cycle
begins.

Active

Table 7. State Transitions from the Requested State 1346
1347 The following transitions SHALL apply when the EC/CCSpec is in the active state:

Event (when in
the active state)

Action Next state

Call to
subscribe

The specified subscriber is added to the set of
current subscribers for the EC/CCSpec.

Active

Call to poll A new poll call is outstanding. Active

Call to
unsubscribe

The specified subscriber is removed from the
list of current subscribers.

The event/command cycle ends with no reports
delivered, if there are no more subscribers or
outstanding poll calls.

Unrequested, if
there are no more
subscribers or
outstanding poll
calls; Active
otherwise

An outstanding
poll call is
aborted by the
ALE client

The poll call is no longer outstanding.

The event/command cycle ends with no reports
delivered, if there are no more subscribers or
outstanding poll calls.

Unrequested, if
there are no more
subscribers or
outstanding poll
calls; Active
otherwise

 Copyright © 2004–2009 EPCglobal®, All Rights Reserved. Page 47 of 229

Call to undefine The event/command cycle ends.

Reports are returned to all outstanding poll
calls for this EC/CCSpec (and thereafter, those
poll calls are no longer outstanding).

Reports are delivered to all current subscribers,
unless suppressed according to
Sections 8.2.5 and 9.3.2.

All reports SHALL have
terminationCondition set to
UNDEFINE. For an ECSpec, the reports
SHALL include any Tags that were read prior
to the undefine call. For a CCSpec, the
reports SHALL include any operations that
were completed prior to the undefine call.

All information associated with the
EC/CCSpec, including subscribers and prior
tag set state, is discarded.

(ECSpec no
longer exists)

A stopping
condition has
occurred, as
specified in
Section 8.2.1 (for
an ECSpec) or
Section 9.3.1 (for a
CCSpec)

The event/command cycle ends.

Reports are returned to all outstanding poll
calls for this EC/CCSpec (and thereafter, those
poll calls are no longer outstanding).

Reports are delivered to all current subscribers,
unless suppressed according to
Sections 8.2.5 and 9.3.2.

Active, if a repeat
period is specified
and the repeat
period has elapsed
since the
transition into the
active state, or if
neither a repeat
period nor any
start triggers are
specified (either
of these counts as
a new transition
into the active
state for the
purpose of
describing
transition events);
Requested,
otherwise

Table 8. State Transitions from the Active State 1348
1349
1350

Events occuring at times other than those specified in the tables above SHALL NOT
cause a state transition.

Explanation (non-normative): In general, subscribers receive reports when event or 1351
command cycles complete (that is, transition out of the active state). Nothing is sent to 1352

 Copyright © 2004–2009 EPCglobal®, All Rights Reserved. Page 48 of 229

subscribers to indicate that a subscription has been removed via unsubscribe, or that 1353
an ECSpec or CCSpec was removed via undefine (except in the case that an 1354
undefine causes a transition out of the active state). 1355

1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373

1375
1376
1377
1378
1379
1380

1383
1384

1385
1386
1387

1388

Special treatment is given in the Writing API to two or more simultaneous poll calls for
the same CCSpec when parameters are supplied. Normally, simultaneous poll calls for
the same CCSpec share the same command cycle, and results are delivered to all such
poll calls when the command cycle completes. (The same is true for event cycles in the
Reading API.) This cannot be done, however, if the CCSpec includes CCOpSpec
instances that refer to parameters, and the simultaneous poll calls each supply different
parameter values. If an ALE Writing API implementation receives a second poll call
for a CCSpec for which there is already an outstanding poll call, and the second poll
call specifies different parameter values, the ALE implementation SHALL satisfy the
second poll by a initiating a new command cycle rather than sharing the results of the
first, as though the second poll were of a different CCSpec. Because both command
cycles share the same logical readers the two command cycles may fall subject to pre-
emption as specified in Section 5.3. If an ALE implementation receives a second poll
call for a CCSpec for which there is already an outstanding poll call, and the second
poll call specifies the same parameter values as the first, the ALE implementation
MAY treat the second poll as above or it MAY share the same command cycle.
Simultaneous poll calls for the same CCSpec that specify no parameters SHALL share
the same command cycle, as implied by the state diagrams in this section.

5.6.2 Lifecycle State Transitions for EC/CCSpecs Created by the 1374
Immediate Method

An EC/CCSpec that is created by a call to the immediate method of the ALE
Reading/Writing API SHALL begin in the requested state if any start triggers are
specified, and in the active state if no start triggers are specified (in this case, an
event/command cycle begins immediately). Thereafter, it is subject to state transitions
that occur in response to the following kinds of events:

• The immediate call being aborted, as provided for in Sections 8.1 and 9.1. 1381

• Event/command cycle stopping conditions, as specified by the EC/CCSpec. The 1382
EC/CCSpec parameters that determine starting and stopping conditions are defined in
Sections 8.2.1 and 9.3.1.

The state transitions are illustrated in the diagram below. For clarity, not all details of
each state transition are shown in the diagram; the tables following the diagram constitute
the normative specification of all state transitions.

 Copyright © 2004–2009 EPCglobal®, All Rights Reserved. Page 49 of 229

 1389
1390
1391
1392
1393
1394
1395

1396

An EC/CCSpec that is created by a call to the immediate method SHALL be subject to
the state transitions specified in the two tables below, which are a simplified subset of the
tables in Section 5.6.1. In these tables, “start triggers” refer to start condition information
that is derived from the EC/CCSpec as described normatively in Sections 8.2.1 and 9.3.1.
It is possible for an EC/CCSpec to specify no start triggers, and this figures into the
description of the state transitions.

The following transitions SHALL apply when the EC/CCSpec is in the requested state:

Event (when in the
requested state)

Action Next state

Arrival of a start trigger An event/command cycle
begins.

Active

The immediate call is
aborted

The event/command cycle
ends, with no reports
delivered.

(ECSpec no longer exists)

Table 9. State Transitions from the Requested State 1397
1398 The following transitions SHALL apply when the EC/CCSpec is in the active state:

Event (when in the active
state)

Action Next state

A stopping condition has
occurred as specified in
Section 8.2.1 (for an
ECSpec) or Section 9.3.1
(for a CCSpec).

The event/command cycle
ends.

Reports are returned to the
immediate caller.

(ECSpec no longer exists)

Re-
quested

Active

immediate

immediate call aborted by client

Start trigger
received

immediate,
when no start trigger specified

Stopping condition reached or
immediate call aborted by client

 Copyright © 2004–2009 EPCglobal®, All Rights Reserved. Page 50 of 229

Event (when in the active
state)

Action Next state

The immediate call is
aborted

The event/command cycle
ends, with no reports
delivered.

(ECSpec no longer exists)

Table 10. State Transitions from the Active State 1399
1400
1401

1403
1404
1405
1406
1407
1408
1409
1410

1412
1413
1414
1415

1416
1417
1418

1420
1421

1422
1423
1424
1425
1426

1427
1428
1429
1430
1431

Events occuring at times other than those specified in the tables above SHALL NOT
cause a state transition.

6 Built-in Fieldnames, Datatypes, and Formats 1402
This section defines specific fieldnames, datatypes, and formats that are pre-defined by
the ALE specification. These may be used by ALE clients to construct fieldspecs that are
used by the Reading API and the Writing API. In addition to those defined here, ALE
implementations MAY provide additional pre-defined fieldnames, datatypes, and
formats. The Tag Memory API (Section 7) provides a standardized way for ALE clients
to define additional fieldnames beyond those pre-defined by an ALE implementation.
ALE implementations MAY also provide extension APIs that allow ALE clients to define
new datatypes and formats beyond those that are pre-defined.

6.1 Built-in Fieldnames 1411
This section defines fieldnames that are pre-defined by the ALE specification. An ALE
implementation SHALL recognize each fieldname defined in this section and interpret it
as defined herein. In addition, an ALE implementation that implements the TMSpec API
SHALL recognize fieldnames defined through that API (see Section 7).

In general, the definition of a fieldname has to say how it applies to different tag types,
and the default datatype and format to be used when not explicitly specified as part of a
fieldspec.

6.1.1 The epc fieldname 1419
An ALE implementation SHALL recognize the string epc as a valid fieldname as
specified in this section.

When interacting with a Gen2 Tag, an ALE implementation SHALL interpret the epc
fieldname as referring to the EPC/UII content of the EPC memory bank (Bank 012) as
defined in [Gen2]. Specifically, it refers to the toggle bit (bit 17h), the Reserved/AFI bits
(bits 18h-1Fh), and the EPC/UII bits (bits 20h through the end of the EPC bank as
indicated by the length bits 10h-14h).

When interacting with a Gen1 Tag, an ALE implementation SHALL interpret the epc
fieldname as referring to the EPC content of the Tag; that is, the EPC payload (the
number of bits being fixed by the tag) not including CRC or other non-EPC bits. The
treatment SHALL be equivalent to a Gen2 tag whose toggle bit (bit 17h) and
Reserved/AFI bits (bits 18h-1Fh) are zeros.

 Copyright © 2004–2009 EPCglobal®, All Rights Reserved. Page 51 of 229

When interacting with a Gen1 or Gen2 Tag, an ALE implementation SHALL raise an
“operation not possible” condition if an attempt is made to carry out a “lock” operation
on the epc field. (The entire EPC bank may be locked, however, using the epcBank
fieldname defined in Section

1432
1433
1434
1435

1436
1437
1438

1439
1440
1441
1442

1443
1444

1446
1447

1448
1449
1450

1451
1452
1453

1454
1455
1456

1458
1459

1460
1461
1462
1463

1464
1465
1466

6.1.4, below.)

When interacting with any other type of Tag, the interpretation of the epc fieldname is
implementation dependent. An ALE implementation SHOULD carefully document its
behavior in this situation.

The only datatype that may be used with the epc fieldname is the epc datatype
(Section 6.2.1). If a fieldspec specifies a fieldname of epc and specifies any other
datatype besides epc, the ALE implementation SHALL consider the fieldspec to be
invalid.

The default datatype for the epc fieldname is epc (Section 6.2.1). The default format
for the epc fieldname is epc-tag (Section 6.2.1.1).

6.1.2 The killPwd fieldname 1445
An ALE implementation SHALL recognize the string killPwd as a valid fieldname as
specified in this section.

When interacting with a Gen2 Tag, an ALE implementation SHALL interpret the
killPwd fieldname as a synonym for the fieldname @0.32, that is, for offset 00h to 1Fh
in the RESERVED memory bank of a Gen2 Tag, which holds the Kill Password.

When interacting with any other type of Tag, the interpretation of the killPwd
fieldname is implementation dependent. An ALE implementation SHOULD carefully
document its behavior in this situation.

The default datatype for the killPwd field SHALL be uint (Section 6.2.2); the default
format SHALL be hex. The implementation SHALL NOT permit any other datatypes
defined in this specification to be used for the killPwd field.

6.1.3 The accessPwd fieldname 1457
An ALE implementation SHALL recognize the string accessPwd as a valid fieldname
as specified in this section.

When interacting with a Gen2 Tag, an ALE implementation SHALL interpret the
accessPwd fieldname as a synonym for the fieldname @0.32.32, that is, for offset
20h to 3Fh in the RESERVED memory bank of a Gen2 Tag, which holds the Access
Password.

When interacting with any other type of Tag, the interpretation of the accessPwd
fieldname is implementation dependent. An ALE implementation SHOULD carefully
document its behavior in this situation.

 Copyright © 2004–2009 EPCglobal®, All Rights Reserved. Page 52 of 229

The default datatype for the accessPwd field SHALL be uint (Section 6.2.2); the
default format SHALL be hex. The implementation SHALL NOT permit any other
datatypes defined in this specification to be used for the accessPwd field.

1467
1468
1469

1471
1472

1473
1474
1475
1476
1477
1478
1479
1480
1481

1482
1483
1484

1485
1486
1487

1489
1490

1491
1492
1493
1494
1495
1496
1497
1498
1499

1500
1501
1502

1503
1504
1505

6.1.4 The epcBank fieldname 1470
An ALE implementation SHALL recognize the string epcBank as a valid fieldname as
specified in this section.

When interacting with a Gen2 Tag, an ALE implementation SHALL interpret the
epcBank fieldname as referring to the content of the EPC memory bank (Bank 012) as
defined in [Gen2]. Specifically, it refers to the offset 00h up to the end of this memory
bank. When this fieldname is referred by an ALE write command the data is written from
offset 00h till the length of the provided data length. When this fieldname is referred by
ALE read command the data is read from offset 00h through the end of this memory
bank. If the implementation cannot or does not wish to support reading to the end of the
memory bank, an ALE implementation SHALL raise an “operation not possible”
condition when an attempt is made to read from the epcBank field.

When interacting with any other type of Tag, the interpretation of the epcBank
fieldname is implementation dependent. An ALE implementation SHOULD carefully
document its behavior in this situation.

The default datatype for the epcBank field SHALL be bits (Section 6.2.3); the default
format SHALL be hex. The implementation SHALL NOT permit any other datatypes
defined in this specification to be used for the epcBank field.

6.1.5 The tidBank fieldname 1488
An ALE implementation SHALL recognize the string tidBank as a valid fieldname as
specified in this section.

When interacting with a Gen2 Tag, an ALE implementation SHALL interpret the
tidBank fieldname as referring to the content of the TID memory bank (Bank 102) as
defined in [Gen2]. Specifically, it refers to the offset 00h up to the end of this memory
bank. When this fieldname is referred by an ALE write command the data is written from
offset 00h till the length of the provided data length. When this fieldname is referred by
ALE read command the data is read from offset 00h through the end of this memory
bank. If the implementation cannot or does not wish to support reading to the end of the
memory bank, an ALE implementation SHALL raise an “operation not possible”
condition when an attempt is made to read from the tidBank field.

When interacting with any other type of Tag, the interpretation of the tidBank
fieldname is implementation dependent. An ALE implementation SHOULD carefully
document its behavior in this situation.

The default datatype for the tidBank field SHALL be bits (Section 6.2.3); the default
format SHALL be hex. The implementation SHALL NOT permit any other datatypes
defined in this specification to be used for the tidBank field.

 Copyright © 2004–2009 EPCglobal®, All Rights Reserved. Page 53 of 229

6.1.6 The userBank fieldname 1506
An ALE implementation SHALL recognize the string userBank as a valid fieldname as
specified in this section.

1507
1508

1509
1510
1511
1512
1513
1514
1515
1516
1517

1518
1519
1520

1521
1522
1523

1525
1526

1527
1528
1529
1530
1531

1532
1533
1534
1535

1536
1537
1538

1539
1540
1541

When interacting with a Gen2 Tag, an ALE implementation SHALL interpret the
userBank fieldname as referring to the content of the User memory bank (Bank 112) as
defined in [Gen2]. Specifically, it refers to the offset 00h up to the end of this memory
bank. When this fieldname is referred by an ALE write command the data is written from
offset 00h till the length of the provided data length. When this fieldname is referred by
ALE read command the data is read from offset 00h through the end of this memory
bank. If the implementation cannot or does not wish to support reading to the end of the
memory bank, an ALE implementation SHALL raise an “operation not possible”
condition when an attempt is made to read from the userBank field.

When interacting with any other type of Tag, the interpretation of the userBank
fieldname is implementation dependent. An ALE implementation SHOULD carefully
document its behavior in this situation.

The default datatype for the userBank field SHALL be bits (Section 6.2.3); the
default format SHALL be hex. The implementation SHALL NOT permit any other
datatypes defined in this specification to be used for the userBank field.

6.1.7 The afi fieldname 1524
An ALE implementation SHALL recognize the string afi as a valid fieldname as
specified in this section.

When interacting with a Gen2 Tag, an ALE implementation SHALL interpret the afi
fieldname as a synonym for the fieldname @1.8.24, that is, for offset 18h to 1Fh in the
EPC/UII memory bank of a Gen2 Tag, which may hold the ISO 15962 Application
Family Identifier (AFI). When interacting with a Gen1 Tag, an ALE implementation
SHALL interpret the afi fieldname as a “field not found”.

When interacting with a Gen2 Tag, an ALE implementation SHALL raise an “operation
not possible” condition if an attempt is made to carry out a “lock” operation on the afi
field. (The entire EPC bank may be locked, however, using the epcBank fieldname
defined in Section 6.1.4, above.)

When interacting with any other type of Tag, the interpretation of the afi fieldname is
implementation dependent. An ALE implementation SHOULD carefully document its
behavior in this situation.

The default datatype for the afi field SHALL be uint (Section 6.2.2); the default
format SHALL be hex. The implementation SHALL NOT permit any other datatypes
defined in this specification to be used for the afi field.

 Copyright © 2004–2009 EPCglobal®, All Rights Reserved. Page 54 of 229

6.1.8 The nsi fieldname 1542
An ALE implementation SHALL recognize the string nsi as a valid fieldname as
specified in this section.

1543
1544

1545
1546
1547
1548
1549

1550
1551
1552
1553

1554
1555
1556

1557
1558
1559

1561
1562
1563
1564
1565

1566
1567
1568
1569
1570
1571
1572

1573
1574
1575

1576
1577
1578

When interacting with a Gen2 Tag, an ALE implementation SHALL interpret the nsi
fieldname as a synonym for the fieldname @1.9.23, that is, for offset 17h to 1Fh in the
EPC/UII memory bank of a Gen2 Tag, which holds the Numbering System Identifier
(NSI). When interacting with a Gen1 Tag, an ALE implementation SHALL interpret the
nsi fieldname as a “field not found”.

When interacting with a Gen2 Tag, an ALE implementation SHALL raise an “operation
not possible” condition if an attempt is made to carry out a “lock” operation on the nsi
field. (The entire EPC bank may be locked, however, using the epcBank fieldname
defined in Section 6.1.4, above.)

When interacting with any other type of Tag, the interpretation of the nsi fieldname is
implementation dependent. An ALE implementation SHOULD carefully document its
behavior in this situation.

The default datatype for the nsi field SHALL be uint (Section 6.2.2); the default
format SHALL be hex. The implementation SHALL NOT permit any other datatypes
defined in this specification to be used for the nsi field.

6.1.9 Generic Fieldnames 1560
An ALE implementation SHALL recognize any string beginning with an @ character as
a valid fieldname as specified by the syntax in the following sub-sections, provided that
the string also meets the constraints defined below. An ALE implementation SHALL
consider any string beginning with an @ character but not conforming to any syntax
specified herein, or not meeting the constraints defined below, as an invalid fieldname.

6.1.9.1 Absolute Address Fieldnames
An ALE implementation SHALL recognize any string of the form
@bank.length[.offset] as a valid fieldname as specified in this section, provided
that the string also meets the constraints defined below. Fieldnames of this form are
referred to herein as “absolute address fieldnames.” An ALE implementation SHALL
consider any string beginning with an @ character but not conforming to this syntax, or
not meeting the constraints defined below, as an invalid fieldname.

The constraints are as follows. The bank portion must be 0 or a positive integer with no
leading zeros. The length portion must be a positive integer with no leading zeros.
The offset portion (if specified) must be 0 or a positive integer with no leading zeros.

An ALE implementation SHALL interpret an absolute address fieldname as a fixed field
comprising length contiguous bits starting at offset offset within memory bank
bank. If offset is omitted, the ALE implementation SHALL treat the fieldname in

 Copyright © 2004–2009 EPCglobal®, All Rights Reserved. Page 55 of 229

the same way as if offset were 0. The precise interpretation of offset and bank
depends on the type of Tag, as follows.

1579
1580

1581
1582

When interacting with a Gen2 Tag, an ALE implementation SHALL interpret bank as
follows:

bank value Meaning (see [Gen2])

0 Reserved bank (Bank 002)

1 EPC/UII bank (Bank 012)

2 TID bank (Bank 102)

3 User bank (Bank 112)

Table 11. Bank Values for Absolute Address Fieldnames 1583

1584
1585
1586
1587
1588

1589
1590
1591
1592
1593
1594
1595

1596
1597
1598

1599
1600
1601
1602
1603

1604
1605
1606
1607
1608

1609
1610
1611

Any other bank value SHALL result in a “field not found” condition when interacting
with a Gen2 Tag. When interacting with a Gen2 Tag, the fieldname SHALL be
interpreted as referring to the contiguous field whose most significant bit is offset and
whose least significant bit is bit (offset + length – 1), following the addressing
convention specified in [Gen2].

When interacting with a Gen1 Tag, an ALE implementation SHALL interpret a bank of
0 as referring to the EPC memory of the Tag. Any other bank value SHALL result in a
“field not found” condition when interacting with a Gen1 Tag. The offset field
SHALL be interpreted as referring to an offset from the most significant bit of tag
memory, and the fieldname SHALL be interpreted as referring to the contiguous field
whose most significant bit is offset and whose least significant bit is bit (offset +
length – 1), following that addressing convention.

When interacting with any other type of Tag, the interpretation of bank and offset is
implementation dependent. An ALE implementation SHOULD carefully document its
behavior in this situation.

The default datatype for absolute address fieldnames is uint (Section 6.2.2). The
default format for absolute address fieldnames is hex. The set of legal datatypes for an
absolute address fieldname SHALL be the set of datatypes for which binary encoding and
decoding is defined, that is, uint, bits, epc and any implementation-specific
datatypes that support binary encoding and decoding.

6.1.9.2 Variable Fieldnames
An ALE implementation SHALL recognize any string of the form @bank.oid as a
valid fieldname as specified in this sub-section, provided that the string also meets the
constraints defined below. Fieldnames of this form are referred to herein as “variable
fieldnames.”

The constraints for this fieldname form are as follows. The bank portion must be 0 or a
positive integer with no leading zeros. The oid portion must be a valid Object Identifier
represented in the URN syntax specified in [RFC3061]. An ALE implementation SHALL

 Copyright © 2004–2009 EPCglobal®, All Rights Reserved. Page 56 of 229

interpret a variable fieldname as a variable field, referring to an ISO 15962 “data set”
whose Object Identifier is oid and which is encoded in Tag memory using the encoding
rules specified in [ISO15962].

1612
1613
1614

1615

1616
1617

The precise interpretation of bank depends on the type of Tag, as follows.

When interacting with a Gen2 Tag, an ALE implementation SHALL interpret bank as
follows:

bank value Meaning (see [Gen2])

0 Invalid (“field not found” condition)

1 EPC/UII bank (Bank 012)

2 Invalid (“field not found” condition)

3 User bank (Bank 112)

Table 12. Bank Values for Variable Fieldnames 1618

1619
1620

1621
1622

1623
1624
1625
1626
1627

1628
1629
1630

1631
1632

Any other bank value SHALL result in a “field not found” condition when interacting
with a Gen2 Tag.

When interacting with a Gen1 Tag, an ALE implementation SHALL result in a “field not
found” condition when referring to an ISO data set.

An implementation MAY choose not to support variable fieldnames for WRITE
operations, in which case an attempt to do so SHALL raise an “operation not possible”
condition. An implementation MAY also choose not to support variable fieldnames for
READ operations and for the Reading API, in which case an attempt to do so SHALL
raise an “operation not possible” condition.

When interacting with any other type of Tag, the interpretation of a variable fieldname is
implementation dependent. An ALE implementation SHOULD carefully document its
behavior in this situation.

The default datatype for ISO data set fieldnames is iso-15962-string. The default
format for ISO data set fieldnames is string.

Explanation (non-normative): ISO 15962 specifies a scheme for encoding an arbitrary 1633
collection of variable-length fields into the memory bank of a Tag. Within that 1634
specification, the term “data set” is used in the same way the term “field” is used in this 1635
specification. The collection of data sets (fields) is encoded by encoding each data set 1636
(field) and concatenating the results together. The complete memory image consists of a 1637
Data Storage Format Identifier (DSFID) follows by the concatenated encoded data sets. 1638
The DSFID includes information that is necessary to decode what follows. 1639

Each encoded data set is conceptually an object consisting of a name/value pair, as 1640
follows. 1641

Name: The name of a field is specified by an Object Identifier (OID) [ASN.1]. 1642

Value: The value of an ISO 15962 data set is always a character string of characters 1643
drawn from the Unicode character set [Unicode]. Applications may enforce particular 1644

 Copyright © 2004–2009 EPCglobal®, All Rights Reserved. Page 57 of 229

syntax constraints on these strings depending on the OID of a field, but these are not 1645
known or enforced at the ALE level. 1646

ISO 15962 defined an efficient compaction and encoding scheme that seeks to minimize 1647
the total number of bits consumed while still allowing each data set to be located and 1648
operated upon individually. The compaction rules take advantage of such things as 1649
several data sets sharing a common OID prefix,a data set value containing only 1650
alphabetic characters, and so on. By treating ISO data sets as string-valued fields 1651
having names constructed from an OID, the ALE client is insulated from having to know 1652
and apply the encoding and compaction rules specified in ISO 15962. 1653

Note that many industry-specific data elements have been assigned standardized OIDs. 1654
Examples include: 1655

GS1 Application Identifiers (AIs) correspond to OIDs of the form 1656
urn:oid.1.0.15961.9.AI, where AI is the application identifier. 1657

ANSI Data Identifiers (DIs) correspond to OIDs of the form 1658
urn:oid.1.0.15961.10.DI, where DI is the data identifier. 1659

The International Air Transport Association (IATA) has defined a standard repertoire of 1660
data sets having OIDs that begin with the prefix urn:oid:1.0.15961.12. 1661

1662
1663
1664
1665
1666

1667
1668
1669
1670
1671
1672
1673

1675
1676
1677

1678
1679
1680
1681

6.1.9.3 Variable Pattern Fieldnames
An ALE implementation SHALL recognize variable pattern fieldnames as specified in
this section. A variable pattern fieldname has the form @bank.oid-prefix.*, where
bank is as specified in Section 6.1.9.2, and oid-prefix is a string conforming to the
URN syntax for OIDs specified in [RFC3061].

When an ECReportOutputFieldSpec (Section 8.2.11) includes a variable pattern
fieldname, the ALE implementation SHALL report all ISO 15962 data sets in the
specified memory bank whose OID has oid-prefix as a prefix. The fieldname
appearing in the ECReportMemberField (Section 8.3.7) instance corresponding to
each data set SHALL be a variable fieldname (Section 6.1.9.2) containing the full OID of
the data set (unless overridden by a non-null name parameter in the
ECReportOutputFieldSpec).

6.2 Built-in Datatypes and Formats 1674
This section defines datatypes and formats that are pre-defined by the ALE specification.
An ALE implementation SHALL recognize each datatype and format defined in this
section and interpret it as defined herein.

In general, the specification of each datatype has to say what formats may be used with
that datatype. Each format has to say whether it is permissible in both reading and
writing contexts or only in reading contexts. A format must define a syntax for literal
values, for filter patterns, and for grouping patterns.

 Copyright © 2004–2009 EPCglobal®, All Rights Reserved. Page 58 of 229

An ALE implementation SHALL consider a fieldspec invalid if the format is not
compatible with the datatype, or if the format is a read-only format and the fieldspec is
being used in a context that requires a read-write format.

1682
1683
1684

1686
1687

1688
1689
1690
1691
1692
1693
1694
1695
1696

1697
1698
1699
1700

1701
1702
1703
1704
1705

1707

1709
1710
1711
1712

1714
1715

6.2.1.2 1716
1717
1718
1719

6.2.1 The epc datatype 1685
An ALE implementation SHALL recognize the string epc as a valid datatype as
specified in this section.

The epc datatype refers to the space of values defined in the EPCglobal Tag Data
Standard [TDS1.3.1]. (An implementation MAY support a later version of the
EPCglobal Tag Data Standard, in which case it SHALL provide documentation
specifying which version it supports.) Because this includes “raw” EPC values, any bit
string of any length may be considered a member of the epc datatype. The value space
also includes EPC values of the form urn:epc:raw:N.A.V, which can only be
encoded in contexts where a toggle bit and AFI are available. The encoding and
decoding of the epc datatype SHALL be according to the EPCglobal Tag Data Standard
[TDS1.3.1] (or later, if applicable).

6.2.1.1 Binary Encoding and Decoding of the EPC Datatype
When reading and writing values of the epc datatype in a field that includes a toggle bit
and AFI (including the epc field as specified in Section 6.1.1), decoding and encoding
SHALL take place as specified in Section 6.2.1.2 below.

When reading and writing values of the epc datatype in a field that does not include a
toggle bit and AFI (including an absolute address field as specified in Section 6.1.9.1),
the following rules apply. Decoding SHALL take place as specified in Section 6.2.1.2,
using the rules for the case where the toggle bit and the AFI are not available. Encoding
SHALL take place using those same rules, with the following modifications:

• If the encoded value has more bits than are available in the specified field, an “out of 1706
range” condition SHALL be raised.

• If the encoded value has fewer bits than are available in the specified field, the 1708
encoded value SHALL be padded with trailing zero bits to fit. That is, the most
significant bit of the encoded value is aligned to the most significant bit of the field,
and the least significant bits of the field beyond the encoded value are filled with
zeros.

• If the EPC value is of the form urn:epc:raw:N.A.V , an “out of range” condition 1713
SHALL be raised (because there is no available toggle and AFI, required for values
of this form).

EPC datatype Formats
An ALE implementation SHALL recognize the format names specified below and
permit their use with the epc datatype. The notation “RW” below indicates that the ALE
implementation SHALL permit the format in both reading and writing contexts, while the

 Copyright © 2004–2009 EPCglobal®, All Rights Reserved. Page 59 of 229

notation “RO” indicates that the ALE implementation SHALL permit the format only in
reading contexts.

1720
1721

Format RO/
RW

Interpretation

epc-pure RO Values are formatted according to the procedure in Section 5.1 of
[TDS1.3.1], or Section 5.3 of [TDS1.3.1] if a toggle bit and AFI
are available (as when reading from a Gen2 Tag). If the
procedure in Section 5.1 of [TDS1.3.1] results in an error, then
the value is formatted as a raw hexadecimal value following
Step 20 of the procedure in Section 5.2 of [TDS1.3.1], or
following Steps 6 through 8 of the procedure in Section 5.4 of
[TDS1.3.1] if a toggle bit and AFI are available and the toggle bit
is a one.

epc-tag RW Values are formatted according to the procedure in Section 5.2 of
[TDS1.3.1], or Section 5.4 of [TDS1.3.1] if a toggle bit and AFI
are available (as when reading from a Gen2 Tag). For writing,
the value to write to the Tag is obtained by following the
procedure in Section 5.5 of [TDS1.3.1], or the procedure in
Section 5.6 of [TDS1.3.1] when writing to a context where a
toggle bit and AFI are usable (as when writing to a Gen2 Tag).

epc-hex RW Values are formatted according to Step 20 of the procedure in
Section 5.2 of [TDS1.3.1], or following Steps 6 through 8 of the
procedure in Section 5.4 of [TDS1.3.1] if a toggle bit and AFI are
available and the toggle bit is a one. For writing, the value to
write the Tag is obtained by following the procedure in
Section 5.5 of [TDS1.3.1], or the procedure in Section 5.6 of
[TDS1.3.1] when writing to a context where a toggle bit and AFI
are usable (as when writing to a Gen2 Tag).

epc-
decimal

RW Like epc-hex, but the V portion of the URI does not include a
leading ‘x’

Table 13. EPC Datatype Formats 1722

1723
1724
1725

6.2.1.3 EPC datatype Pattern Syntax
An ALE implementation SHALL recognize pattern syntax as specified below for each of
the formats defined for use with the epc datatype.

Format Pattern Syntax
epc-pure A pattern is a URI conforming to the syntax defined in Section 4.2.4

of [TDS1.3.1]. The ALE implementation SHALL interpret a pattern
in this form as matching values of the epc datatype following the
definition in Section 6 of [TDS1.3.1].

 Copyright © 2004–2009 EPCglobal®, All Rights Reserved. Page 60 of 229

Format Pattern Syntax
epc-tag A pattern is a URI conforming to the syntax defined in Section 4.2.3

of [TDS1.3.1]. The ALE implementation SHALL interpret a pattern
in this form as matching values of the epc datatype following the
definition in Section 6 of [TDS1.3.1].

epc-hex This format has no pattern syntax.
epc-decimal This format has no pattern syntax.

Table 14. EPC Datatype Pattern Formats 1726

1727
1728
1729

6.2.1.4 EPC datatype Grouping Pattern Syntax
An ALE implementation SHALL recognize grouping pattern syntax as specified below
for each of the formats defined for use with the epc datatype.

Format Pattern Syntax
epc-pure A grouping pattern is a URI conforming to the syntax defined in

Section 4.2.4 of [TDS1.3.1], extended by allowing the character X in
each position where a * character is allowed. The interpretation is
defined below.

epc-tag A pattern is a URI conforming to the syntax defined in Section 4.2.3
of [TDS1.3.1], extended by allowing the character X in each position
where a * character is allowed. The interpretation is defined below.

epc-hex This format has no grouping pattern syntax.
epc-decimal This format has no grouping pattern syntax.

Table 15. EPC Datatype Grouping Formats 1730

1731
1732
1733
1734
1735
1736
1737
1738
1739

1740
1741
1742

1743

As indicated above, a grouping pattern for an epc format has the same syntax as the
corresponding pattern syntax, extended by allowing the character X in each position
where a * character is allowed. All restrictions on the use of the * character as defined in
[TDS1.3.1] apply equally to the use of the X character. For example, the following are
legal grouping patterns for the epc-tag format:
urn:epc:pat:sgtin-96:3.*.*.*
urn:epc:pat:sgtin-96:3.*.X.*
urn:epc:pat:sgtin-96:3.X.*.*
urn:epc:pat:sgtin-96:3.X.X.*

But the following are not:
urn:epc:pat:sgtin-96:3.*.12345.*
urn:epc:pat:sgtin-96:3.X.12345.*

EPC grouping patterns SHALL be interpreted as follows:

Pattern URI Field Meaning

 Copyright © 2004–2009 EPCglobal®, All Rights Reserved. Page 61 of 229

Pattern URI Field Meaning
X Create a different group for each distinct value of this field.
* All values of this field belong to the same group.
Number Only EPCs having Number in this field will belong to this group.
[Lo-Hi] Only EPCs whose value for this field falls within the specified

range will belong to this group.

Table 16. Meaning of EPC Grouping Pattern Field Values 1744

1745 Here are examples of grouping patterns for the epc-tag format:

Pattern URI Meaning
urn:epc:pat:sgtin-96:X.*.*.* groups by filter value (e.g.,

case/pallet)
urn:epc:pat:sgtin-96:*.X.*.* groups by company prefix
urn:epc:pat:sgtin-96:*.X.X.* groups by company prefix and item

reference (i.e., groups by specific
product)

urn:epc:pat:sgtin-96:X.X.X.* groups by company prefix, item
reference, and filter

urn:epc:pat:sgtin-96:3.X.*.[0-100] create a different group for each
company prefix, including in each
such group only EPCs having a
filter value of 3 and serial numbers
in the range 0 through 100,
inclusive

Table 17. Examples of EPC Grouping Patterns 1746
1747
1748
1749

1750
1751
1752
1753
1754

1755
1756

1757

The name of a group generated from a grouping pattern is the same as the grouping
pattern URI, except that the group name URI has an actual value in every position where
the group operator URI had an X character.

For example, if these are the filtered EPCs read for the current event cycle:
 urn:epc:tag:sgtin-96:3.0036000.123456.400
 urn:epc:tag:sgtin-96:3.0036000.123456.500
 urn:epc:tag:sgtin-96:3.0029000.111111.100
 urn:epc:tag:sscc-96:3.0012345.31415926

Then a pattern list consisting of just one element, like this:
 urn:epc:pat:sgtin-96:*.X.*.*

would generate the following groups in the report:

Group Name EPCs in Group

 Copyright © 2004–2009 EPCglobal®, All Rights Reserved. Page 62 of 229

Group Name EPCs in Group
urn:epc:pat:sgtin-96:*.0036000.*.* urn:epc:tag:sgtin-96:3.0036000.123456.400

urn:epc:tag:sgtin-96:3.0036000.123456.500

urn:epc:pat:sgtin-96:*.0029000.*.* urn:epc:tag:sgtin-96:3.0029000.111111.100

[default group] urn:epc:tag:sscc-96:3.0012345.31415926

Table 18. Example EPC Grouping Result 1758
1759
1760
1761

1762
1763

1764

1767

The validation rules for grouping patterns include a test for disjointness (see
Section 8.2.9). Disjointness of two patterns is defined as follows. Let Pat_i and Pat_j be
two pattern URIs, written as a series of fields as follows:

 Pat_i = urn:epc:pat:type_i:field_i_1.field_i_2.field_i_3...
 Pat_j = urn:epc:pat:type_j:field_j_1.field_j_2.field_j_3...

Then Pat_i and Pat_j are disjoint if:

• type_i is not equal to type_j 1765

• type_i = type_j but there is at least one field k for which field_i_k and 1766
field_j_k are disjoint, as defined by the table below:

 X * Number [Lo-Hi]

X Not disjoint Not disjoint Not disjoint Not disjoint
* Not disjoint Not disjoint Not disjoint Not disjoint
Number Not disjoint Not disjoint Disjoint if the

numbers are
different

Disjoint if the
number is not
included in the
range

[Lo-Hi] Not disjoint Not disjoint Disjoint if the
number is not
included in the
range

Disjoint if the
ranges do not
overlap

Table 19. EPC Grouping Pattern Disjointedness Test 1768
1769
1770
1771

1772

1773

1774

1775

1776
1777

The relationship of the grouping patterns defined above to the group operator introduced
in Section 5.2.1 is defined as follows. Formally, a group operator G is specified by a list
of pattern URIs:

 G = (Pat_1, Pat_2, ..., Pat_N)

Let each pattern be written as a series of fields:

 Pat_i = urn:epc:pat:type_i:field_i_1.field_i_2.field_i_3...

where each field_i_j is either X, *, Number, or [Lo-Hi].

Then the definition of G(epc) is as follows. Let epc be written like this:
 urn:epc:tag:type_epc:field_epc_1.field_epc_2.field_epc_3...

 Copyright © 2004–2009 EPCglobal®, All Rights Reserved. Page 63 of 229

The epc is said to match Pat_i if 1778

1781

1782

1783

1784

1785
1786

1787

1789

1790
1791

1794
1795

1796

1797
1798
1799

1800
1801

6.2.2.2 1802
1803
1804

1805
1806
1807
1808
1809

• type_epc = type_i; and 1779

• For each field k, one of the following is true: 1780

• field_i_k = X

• field_i_k = *

• field_i_k is a number, equal to field_epc_k

• field_i_k is a range [Lo-Hi], and Lo ≤ field_epc_k ≤ Hi

Because of the disjointedness constraint specified above, the epc is guaranteed to match
at most one of the patterns in G.

G(epc) is then defined as follows:

• If epc matches Pat_i for some i, then 1788

G(epc) = urn:epc:pat:type_epc:field_g_1.field_g_2.field_g_3...

where for each k, field_g_k = field_epc_k, if field_i_k = X; or
field_g_k = field_i_k, otherwise.

• If epc does not match Pat_i for any i, then G(epc) = the default group. 1792

6.2.2 Unsigned Integer (uint) Datatype 1793
An ALE implementation SHALL recognize the string uint as a valid datatype as
specified in this section.

The space of values for the datatype uint is the set of non-negative integers.

6.2.2.1 Binary Encoding and Decoding of the Unsigned Integer Datatype
When converting between a sequence of N bits and a value of type uint, the leftmost bit
SHALL be considered to be the most significant bit.

If an uint value to be encoded to a sequence of N bits is greater than or equal to 2N, an
“out of range” condition SHALL be raised.

Unsigned Integer Datatype Formats
An ALE implementation SHALL recognize hex and decimal as valid formats for the
uint datatype, as specified below.

In the hex format, an unsigned integer is represented using the following syntax:
HexUnsignedInteger ::= ‘x’ HexDigit+
HexDigit ::= DecimalDigit | ‘A’ | ‘B’ | ‘C’ | ‘D’ | ‘E’ | ‘F’ |
‘a’ | ‘b’ | ‘c’ | ‘d’ | ‘e’ | ‘f’
DecimalDigit ::= ‘0’ | NonZeroDigit

 Copyright © 2004–2009 EPCglobal®, All Rights Reserved. Page 64 of 229

NonZeroDigit ::= ‘1’ | ‘2’ | ‘3’ | ‘4’ | ‘5’ | ‘6’ | ‘7’ | ‘8’ |
‘9’

1810
1811

1812
1813
1814

1815

1816
1817

1818
1819
1820

1821
1822

1823
1824
1825

1826
1827
1828
1829

1830
1831
1832
1833

1834
1835
1836
1837
1838
1839
1840

1841
1842

1843
1844
1845

For output, the ALE implementation SHALL construct a HexUnsignedInteger
string with no leading zeros, except that the value zero itself is represented by a single ‘0’
digit. The string SHALL NOT contain lowercase letters.

For input, the ALE implementation SHALL accept any HexUnsignedInteger string.

In the decimal format, an unsigned integer is represented using the following syntax:
DecimalUnsignedInteger ::= DecimalDigit+

For output, the ALE implementation SHALL construct a
DecimalUnsignedInteger string with no leading zeros, except that the value zero
itself is represented by a single ‘0’ digit.

For input, the ALE implementation SHALL accept any DecimalUnsignedInteger
string.

6.2.2.3 Unsigned Integer Pattern Syntax
An ALE implementation SHALL recognize pattern syntax as specified below for each of
the formats defined for use with the uint datatype.

In the hex format, an unsigned integer pattern is represented using the following syntax:
HexUnsignedIntegerPattern ::= HexUnsignedInteger | ‘*’ | ‘[’
HexUnsignedInteger ‘-’ HexUnsignedInteger ‘]’ | ‘&’
HexUnsignedInteger ‘=’ HexUnsignedInteger

In the decimal format, an unsigned integer pattern is represented using the following
syntax:
DecimalUnsignedIntegerPattern ::= DecimalUnsignedInteger | ‘*’ |
‘[’ DecimalUnsignedInteger ‘-’ DecimalUnsignedInteger ‘]’

An ALE implementation SHALL interpret these patterns as follows for both formats. If a
pattern is a single integer value (i.e., HexUnsignedInteger or
DecimalUnsignedInteger as appropriate), the pattern matches a value equal to the
pattern. If a pattern is the ‘*’ character, the pattern matches any value. If a pattern is in
the form [lo-hi], the pattern matches any value between lo and hi, inclusive. If a
pattern is in the form &mask=compare the pattern matches any value that is equal to
compare after being bitwise and-ed with mask.

For mask-compare patterns, one additional syntactic constraint applies: each bit in
compare must be 0 if its corresponding bit in mask is also 0.

6.2.2.4 Unsigned Integer Grouping Pattern Syntax
An ALE implementation SHALL recognize grouping pattern syntax as specified below
for each of the formats defined for use with the uint datatype.

 Copyright © 2004–2009 EPCglobal®, All Rights Reserved. Page 65 of 229

In the hex format, an unsigned integer grouping pattern is represented using the
following syntax:

1846
1847
1848
1849

1850
1851
1852
1853

1854

HexUnsignedIntegerGroupingPattern ::= HexUnsignedIntegerPattern |
‘X’

In the decimal format, an unsigned integer grouping pattern is represented using the
following syntax:
DecimalUnsignedIntegerGroupingPattern ::=
DecimalUnsignedIntegerPattern | ‘X’

Unsigned grouping patterns SHALL be interpreted as follows:

Pattern URI Field Meaning
X Create a different group for each distinct value.
* All values belong to the same group.
Number Only values equal to Number will belong to this group.
[Lo-Hi] Only values that fall within the specified range (inclusive) will

belong to this group.

Table 20. Unsigned Integer Grouping Pattern Field Values 1855
1856
1857
1858

1859
1860
1861
1862

The name of a group generated from a grouping pattern is the same as the grouping
pattern, except that if the grouping pattern was ‘X’ then the group name is the actual
value.

The validation rules for grouping patterns include a test for disjointness (see
Section 8.2.9). Disjointness of two patterns is defined as follows. Let Pat_i and Pat_j be
two unsigned integer grouping patterns. Then Pat_i and Pat_j are disjoint according to
the table below:

 X * Number [Lo-Hi]

X Not disjoint Not disjoint Not disjoint Not disjoint
* Not disjoint Not disjoint Not disjoint Not disjoint
Number Not disjoint Not disjoint Disjoint if the

numbers are
different

Disjoint if the
number is not
included in the
range

[Lo-Hi] Not disjoint Not disjoint Disjoint if the
number is not
included in the
range

Disjoint if the
ranges do not
overlap

Table 21. Unsigned Integer Grouping Pattern Disjointedness Test 1863

 Copyright © 2004–2009 EPCglobal®, All Rights Reserved. Page 66 of 229

The relationship of the grouping patterns defined above to the group operator introduced
in Section

1864
1865
1866

1867

1868

1869

1874
1875

1876

1878

1881
1882

1883
1884
1885
1886

1887
1888
1889

1890
1891

5.2.1 is defined as follows. Formally, a group operator G is specified by a list
of grouping patterns:

 G = (Pat_1, Pat_2, ..., Pat_N)

Then the definition of G(value) is as follows.

The integer value matches Pat_i if one of the following is true:

• Pat_i = X 1870

• Pat_i = * 1871

• Pat_i is a number, equal to value 1872

• Pat_i is a range [Lo-Hi], and Lo ≤ value ≤ Hi 1873

Because of the disjointedness constraint specified above, the value is guaranteed to match
at most one of the patterns in G.

G(value) is then defined as follows:

• If value matches Pat_i for some i, then 1877

G(value) = value, if Pat_i = X; G(value) = Pat_i, otherwise

• If value does not match Pat_i for any i, then G(value) = the default group. 1879

6.2.3 The bits Datatype 1880
An ALE implementation SHALL recognize the string bits as a valid datatype as
specified in this section.

The space of values for the datatype bits is the set of all non-empty and finite-length
sequences of bits. Note that the length of a bits value is significant; values of different
lengths are always considered to be different, even if they only differ by the amount of
leading or trailing zeros.

6.2.3.1 Binary Encoding and Decoding of the Bits Datatype
When reading a value of type bits, the ALE implementation SHALL return the
unmodified sequence of bits read from the field.

When writing a value of type bits, the following table SHALL be used based on the
number of bits in the of the bits value (M) and the number of bits in the field (N):

M > N The bits value to be written is longer than the available number of bits,
so an “out of range” condition SHALL be raised.

M = N The lengths match exactly; the value SHALL be written without
modification.

 Copyright © 2004–2009 EPCglobal®, All Rights Reserved. Page 67 of 229

M < N The field is longer than the value. The value SHALL be written to the
leftmost M bits of the destination. (That is, the most significant bit of the
value shall be aligned with the most significant bit position of the field.)
The remaining N−M bits SHALL each either be set to 0 or retain their
previous value, at the discretion of the implementation.

Table 22. Rules for Writing bits Values to Fields of Differing Lengths 1892

Explanation (non-normative): The case M < N only requires writing the entire bits value 1893
to the field beginning at the field’s leftmost position. The implementation may decide if 1894
the remaining part of the field is padded with zero bits or left unchanged. The possibility 1895
to leave the remaining part unchanged is provided to enable implementation specific 1896
optimization. In particular, with fields of unknown length (e.g. userBank) just writing 1897
the left bits may be more efficient than first determining the actual length of the field and 1898
then writing the remaining part padded with zeros. 1899

1900
1901

1902
1903
1904
1905
1906
1907
1908
1909
1910
1911

1912
1913
1914
1915

1916
1917
1918
1919
1920

1921
1922

1923
1924

6.2.3.2 Bits Datatype Formats
An ALE implementation SHALL recognize hex as a valid format for the bits datatype.

In the hex format, a bits value is represented by its length in bits and its bit pattern
encoded in hexadecimal, using the following syntax:
HexBits ::= DecimalPositiveInteger ':' HexUnsignedInteger
DecimalPositiveInteger ::= NonZeroDigit DecimalDigit*
HexUnsignedInteger ::= ‘x’ HexDigit+
HexDigit ::= DecimalDigit | ‘A’ | ‘B’ | ‘C’ | ‘D’ | ‘E’ | ‘F’ |
‘a’ | ‘b’ | ‘c’ | ‘d’ | ‘e’ | ‘f’
DecimalDigit ::= ‘0’ | NonZeroDigit
NonZeroDigit ::= ‘1’ | ‘2’ | ‘3’ | ‘4’ | ‘5’ | ‘6’ | ‘7’ | ‘8’ |
‘9’

For output, the ALE implementation SHALL construct the length part without leading
zeros. The bit pattern SHALL be represented using N HexDigit characters, where N is
the length divided by 4 and rounded up to the next higher integer, padding with leading
zero bits as necessary. The string SHALL NOT contain lowercase letters.

For input, the ALE implementation SHALL accept any HexBits string where the length
specified in the first part of the HexBits string, divided by 4 and rounded up to the next
higher integer, matches the number of HexDigit characters in the second part. If the
length is not divisible by 4, the ALE implementation SHALL require the input to be
padded with leading zero bits.

6.2.3.3 Bits Pattern Syntax
No pattern syntax is defined for the hex format of the bits datatype.

6.2.3.4 Bits Grouping Pattern Syntax
No grouping pattern syntax is defined for the hex format of the bits datatype.

 Copyright © 2004–2009 EPCglobal®, All Rights Reserved. Page 68 of 229

6.2.4 ISO 15962 String Datatype 1925
An ALE implementation SHALL recognize the string iso-15962-string as a valid
datatype referring to a string of zero or more characters drawn from the Unicode
character set [Unicode], encoded according to ISO 15962 [ISO15962].

1926
1927
1928

1929
1930
1931
1932
1933

1934
1935
1936

1937
1938
1939

1941
1942
1943

1944
1945
1946
1947
1948
1949
1950
1951

1952
1953
1954
1955

6.2.4.1 ISO 15962 String Format
An ALE implementation SHALL recognize string as a valid format for the iso-
15962-string datatype. In the string format, a string is represented simply as a
sequence of Unicode characters corresponding directly to the characters encoded in the
Tag.

6.2.4.2 ISO 15962 String Pattern Syntax
No pattern syntax is defined for the string format of the iso-15962-string
datatype.

6.2.4.3 ISO 15962 String Grouping Pattern Syntax
No grouping pattern syntax is defined for the string format of the iso-15962-
string datatype.

7 Tag Memory Specification API 1940
ALE 1.1 provides facilities for filtering, grouping, and reporting of non-EPC tag data. In
support of these functions, ALE 1.1 defines fieldspecs (Section 5.4) that specify data
fields within Tags, used within the ALE APIs for data contents, filters, and groups.

The structure of user-defined memory fields is likely to be application-specific, so in
addition to pre-defined fieldspecs defined in Section 6 the ALE specification provides for
user-defined fieldspecs. The API specified in this section provides for user-defined
fieldnames that refer to fixed-length, fixed-offset fields that are the same for all Tag
types. These user-defined fieldnames are equivalent in functionality to the absolute fixed
address fieldnames defined in Section 6.1.9.1 or to the variable fieldnames defined in
Section 6.1.9.2. ALE implementations MAY extend this API to provide for definitions
of more complex fieldspecs.

An implementation of this API SHALL provide the TMFixedFieldListSpec
specified in Section 7.3, and SHALL also provide the TMVariableFieldListSpec
as specified in Section 7.5. An ALE implementation MAY provide other TMSpec as
vendor extensions.

 Copyright © 2004–2009 EPCglobal®, All Rights Reserved. Page 69 of 229

7.1 ALETM – Main API class 1956
<<interface>> 1957

ALETM 1958
--- 1959
defineTMSpec(specName : String, spec : TMSpec) : void 1960
undefineTMSpec(specName : String) : void 1961
getTMSpec(specName : String) : TMSpec 1962
getTMSpecNames() : List<String> 1963
getStandardVersion() : String 1964
getVendorVersion() : String 1965
<<extension point>> 1966

1967
1968

An ALE implementation SHALL implement the methods of the ALE Tag Memory
Specification API as specified in the following table:

Method Argument/
Result

Type Description

defineTMSpec specName String Defines new fieldnames
according to spec.
Thereafter, clients of the
Reading and Writing APIs
may refer to the fieldnames
defined by spec. The value
of the specName parameter
is an arbitrary string that the
client may use to refer to the
TMSpec in subsequent calls
to undefineTMSpec and
getTMSpec, but otherwise
is not related to the
fieldnames defined by the
specified spec.

spec TMSpec

[result] Void

undefineTMSpec specName String Removes the fieldnames
defined previously by the
TMSpec named specName.

[result] Void

getTMSpec specName String Returns the TMSpec

 Copyright © 2004–2009 EPCglobal®, All Rights Reserved. Page 70 of 229

Method Argument/
Result

Type Description

[result] TMSpec previously defined using
name specName. The result
SHALL be equivalent to the
TMSpec that was provided
to the define method, but
NEED NOT be identical.
“Equivalent” means that the
returned TMSpec has exactly
the same meaning as the
original TMSpec when
interpreted according to this
specification.

getTMSpecNames [result] List<String> Returns an unordered list of
the names of previously
defined TMSpecs.

getStandardVersion [result] String Returns a string that
identifies what version of the
specification this
implementation of the ALE
Tag Memory API complies
with, as specified in
Section 4.3.

getVendorVersion [result] String Returns a string that
identifies what vendor
extensions of the ALE Tag
Memory API this
implementation provides as
specified in Section 4.3.

Table 23. ALETM Interface Methods 1969
1970
1971
1972

1974
1975
1976
1977

A tag memory spec, or TMSpec, defines a set of symbolic fieldnames that may be used in
fieldspecs within the Reading API and the Writing API. The name of a TMSpec is used
as a handle for management of TMSpecs.

7.1.1 Error Conditions 1973
Methods of the Tag Memory Specification API signal error conditions to the client by
means of exceptions. The following exceptions are defined. All the exception types in
the following table are extensions of a common ALEException base type, which
contains one string element giving the reason for the exception.

 Copyright © 2004–2009 EPCglobal®, All Rights Reserved. Page 71 of 229

Exception Name Meaning
SecurityException The operation was not permitted due to an

access control violation or other security
concern. If the Tag Memory API
implementation is associated with an
implementation of the Access Control API
(Section 11), the implementation SHALL
raise this exception if the client was not
granted access rights to the called method
as specified in Section 11. Other,
implementation-specific circumstances
may cause this exception; these are
outside the scope of this specification.

DuplicateNameException The specified TMSpec name already
exists.

TMSpecValidationException The specified TMSpec is invalid or
attempts to define fieldnames that are
already defined. The complete list of
rules for generating this exception are
specified in Sections 7.4 and 7.6.

NoSuchNameException The specified TMSpec name does not
exist.

InUseException The specified TMSpec cannot be
undefined, because there exist one or
more ECSpecs or CCSpecs that refer to it.

ImplementationException A generic exception raised by the
implementation for reasons that are
implementation-specific. This exception
contains one additional element: a
severity member whose values are
either ERROR or SEVERE. ERROR
indicates that the ALE implementation is
left in the same state it had before the
operation was attempted. SEVERE
indicates that the ALE implementation is
left in an indeterminate state.

Table 24. Exceptions for the ALETM Interface 1978
1979
1980
1981
1982
1983

The exceptions that may be raised by each Tag Memory API method are indicated in the
table below. An ALE implementation SHALL raise the appropriate exception listed
below when the corresponding condition described above occurs. If more than one
exception condition applies to a given method call, the ALE implementation may raise
any of the exceptions that applies.

 Copyright © 2004–2009 EPCglobal®, All Rights Reserved. Page 72 of 229

ALE Method Exceptions
defineTMSpec DuplicateNameException

TMSpecValidationException
SecurityException
ImplementationException

undefineTMSpec NoSuchNameException
InUseException
SecurityException
ImplementationException

getTMSpec NoSuchNameException
SecurityException
ImplementationException

getTMSpecNames SecurityException
ImplementationException

getStandardVersion ImplementationException

getVendorVersion ImplementationException

Table 25. Exceptions Raised by each ALETM Interface Method 1984

1986
1987
1988
1989
1990
1991

1992
1993

1995
1996
1997

1999
2000

7.2 TMSpec (abstract) 1985
TMSpec is an abstract class representing any object that an ALE implementation
supports as a means to define fieldnames. An ALE implementation SHALL support
TMFixedFieldListSpec as a possible type of TMSpec. An ALE implementation
also SHALL support TMVariableFieldListSpec as a possible type of TMSpec.
An ALE implementation MAY provide additional types of TMSpecs as vendor
extensions to support defining fieldnames in other ways.

For all subtypes of TMSpec, the defineTMSpec method SHALL raise a
TMSpecValidationException if any of the following are true:

• Any component of the specified TMSpec attempts to create a fieldname that has 1994
previously been defined through the Tag Memory Specification API, or is one of the
built-in fieldnames specified in Section 6.1. The latter includes any fieldname that
begins with the ‘@’ character.

• The specified TMSpec attempts to create two or more fields with the same fieldname. 1998

Specific subtypes of TMSpec MAY specify additional situations under which a
TMSpecValidatonException is raised.

 Copyright © 2004–2009 EPCglobal®, All Rights Reserved. Page 73 of 229

7.3 TMFixedFieldListSpec 2001
TMFixedFieldListSpec 2002

fixedFields : List<TMFixedFieldSpec> 2003
<<extension point>> 2004
--- 2005

2006
2007
2008

A TMFixedFieldListSpec is a type of TMSpec that defines an unordered list of
fieldnames, each fieldname mapping to a specific fixed field described by a bank, offset,
and length.

7.4 TMFixedFieldSpec 2009
TMFixedFieldSpec 2010

fieldname : String 2011
bank : Integer 2012
length : Integer 2013
offset : Integer 2014
defaultDatatype : String 2015
defaultFormat : String 2016
<<extension point>> 2017
--- 2018

2019
2020

A TMFixedFieldSpec specifies a single fixed-length field. An ALE implementation
SHALL interpret the fields as follows:

Field Type Description
fieldname String Specifies the symbolic fieldname name that an

ALE client may use in a fieldspec to refer to the
field defined by this TMFixedFieldSpec.

bank Integer Specifies the bank of Tag memory to which
fieldname refers. The value of bank SHALL
be interpreted by the ALE implementation in the
same manner as bank is in the absolute address
fieldname (Section 6.1.9.1).

length Integer Specifies the length of the contiguous portion of
Tag memory to which fieldname refers. The
value of length SHALL be interpreted by the
ALE implementation in the same manner as
length is in the absolute address fieldname
(Section 6.1.9.1).

 Copyright © 2004–2009 EPCglobal®, All Rights Reserved. Page 74 of 229

Field Type Description
offset Integer Specifies the offset within Tag memory of the start

of the contiguous portion to which fieldname
refers. The value of offset SHALL be
interpreted by the ALE implementation in the
same manner as offset is in the absolute address
fieldname (Section 6.1.9.1).

defaultDatatype String Specifies the default datatype for this field. The
default datatype is used by the ALE Reading or
Writing API when interpreting a fieldspec that
omits the datatype parameter.

defaultFormat String Specifies the default format for this field. The
default format is used by the ALE Reading or
Writing API when interpreting a fieldspec that
omits the format parameter.

Table 26. TMFixedFieldSpec Fields 2021

2022
2023

2025
2026

2028

2033
2034

2036

The defineTMSpec method SHALL raise a TMSpecValidationException if
any of the following are true:

• The value of fieldname is a name that has already been defined through the Tag 2024
Memory Specification API, or is one of the built-in fieldnames specified in
Section 6.1. The latter includes any fieldname that begins with the ‘@’ character.

• The value of fieldname is the same as the fieldname parameter of another member 2027
of the same TMFixedFieldListSpec.

• The value of bank is negative. 2029

• The value of length is zero or negative. 2030

• The value of offset is negative. 2031

• The value of defaultDatatype is not a known datatype, or is not a valid datatype 2032
for the specified bank, length, and offset (for example, if the datatype requires
more bits than have been provided by length).

• The value of defaultFormat is not a known format, or is not a valid format for 2035
the specified defaultDatatype.

 Copyright © 2004–2009 EPCglobal®, All Rights Reserved. Page 75 of 229

7.5 TMVariableFieldListSpec 2037
TMVariableFieldListSpec 2038

variableFields : List<TMVariableFieldSpec> 2039
<<extension point>> 2040
--- 2041

2042
2043
2044

A TMVariableFieldListSpec is a type of TMSpec that defines an unordered list
of fieldnames, each fieldname mapping to a specific ISO 15962 data set named by an
object identifier (OID).

7.6 TMVariableFieldSpec 2045
TMVariableFieldSpec 2046

fieldname : String 2047
bank : Integer 2048
oid : String 2049
<<extension point>> 2050
--- 2051

2052
2053
2054
2055
2056

A TMVariableFieldSpec specifies a variable field (see Section 6.1.9.2 for more
information regarding variable fieldnames). This type allows ALE clients to associate a
symbolic name with an ISO 15962 object identifier. The associated datatype SHALL be
iso-15962-string and the format SHALL be string. An ALE implementation
SHALL interpret the fields as follows:

Field Type Description
fieldname String Specifies the symbolic fieldname name that an

ALE client may use in a fieldspec to refer to the
field defined by this TMVariableFieldSpec.

bank Integer Specifies the bank of Tag memory to which
fieldname refers. The value of bank SHALL
be interpreted by the ALE implementation in the
same manner as bank is in the variable fieldname
(Section 6.1.9.2).

oid String Specifies the object identifier (OID) of the ISO
15962 data set. This string SHALL be interpreted
in the same manner as oid is in the variable
fieldname (Section 6.1.9.2)..

Table 27. TMVariableFieldSpec Fields 2057

2058
2059

The defineTMSpec method SHALL raise a TMSpecValidationException if
any of the following are true:

 Copyright © 2004–2009 EPCglobal®, All Rights Reserved. Page 76 of 229

• The value of fieldname is a name that has already been defined through the Tag 2060
Memory Specification API, or is one of the built-in fieldnames specified in
Section

2061
2062

2064

2068
2069
2070
2071

2072
2073
2074
2075
2076

2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088

6.1. The latter includes any fieldname that begins with the ‘@’ character.

• The value of fieldname is the same as the fieldname parameter of another member 2063
of the same TMVariableFieldListSpec.

• The value of bank is negative. 2065

• The value of oid is not valid syntax according to [RFC3061]. 2066

8 ALE Reading API 2067
This section defines normatively the ALE Reading API. The external interface is defined
by the ALE interface (Section 8.1). This interface makes use of a number of complex
data types that are documented in the sections following Section 8.1. The specification of
the Reading API follows the general rules given in Section 4.

Through the ALE interface defined in Section 8.1, clients may define and manage event
cycle specifications (ECSpecs), read Tags on-demand by activating ECSpecs
synchronously, and enter standing requests (subscriptions) for ECSpecs to be activated
asynchronously. Results from standing requests are delivered through the
ALECallback interface, specified in Section 8.4.

Implementations MAY expose the ALE interface of the ALE Reading API via a wire
protocol, or via a direct API in which clients call directly into code that implements the
API. Likewise, implementations MAY implement the ALECallback interface via a
wire protocol or via a direct API in which clients receive asynchronous results through a
direct callback. This Part I of the ALE 1.1 specification does not define any concrete
wire protocol or programming language-specific API, but instead only provides an
abstract specification of the interfaces using UML. Part II of the specification
[ALE1.1Part2] specifies XML-based wire protocol bindings of the interfaces, including
an XSD schema for the API data types, a WS-I compliant WSDL definition of a SOAP
binding of the ALE interface, and several XML-based bindings of the ALECallback
interface. Implementations MAY provide additional bindings of the API, including
bindings to particular programming languages.

 Copyright © 2004–2009 EPCglobal®, All Rights Reserved. Page 77 of 229

8.1 ALE – Main API Class 2089
<<interface>> 2090

ALE 2091
--- 2092
define(specName : String, spec : ECSpec) : void 2093
undefine(specName : String) : void 2094
getECSpec(specName : String) : ECSpec 2095
getECSpecNames() : List<String> 2096
subscribe(specName : String, notificationURI : String) : 2097
void 2098
unsubscribe(specName : String, notificationURI : String) : 2099
void 2100
poll(specName : String) : ECReports 2101
immediate(spec : ECSpec) : ECReports 2102
getSubscribers(specName : String) : List<String> 2103
getStandardVersion() : String 2104
getVendorVersion() : String 2105
<<extension point>> 2106

2107
2108

An ALE implementation SHALL implement the methods of the ALE Reading API as
specified in the following table:

Method Argument/
Result

Type Description

define specName String Creates a new ECSpec
having the name
specName, according to
spec. The lifecycle of the
new ECSpec SHALL be
subject to the provisions of
Section 5.6.1.

spec ECSpec

[result] Void

undefine specName String Removes the ECSpec named
specName that was
previously created by the
define method. The effect
SHALL be as specified in
Section 5.6.1.

[result] Void

getECSpec specName String Returns the ECSpec that

 Copyright © 2004–2009 EPCglobal®, All Rights Reserved. Page 78 of 229

Method Argument/
Result

Type Description

[result] ECSpec was provided when the
ECSpec named specName
was created by the define
method. The result SHALL
be equivalent to the ECSpec
that was provided to the
define method, but NEED
NOT be identical.
“Equivalent” means that the
returned ECSpec has exactly
the same meaning as the
original ECSpec when
interpreted both according to
this specification and
according to the ALE 1.0
specification.

getECSpecNames [result] List<String> Returns an unordered list of
the names of all ECSpecs
that are visible to the caller.
The order of this list is
implementation-dependent.

subscribe specName String Adds a subscriber having the
specified
notificationURI to the
set of current subscribers of
the ECSpec named
specName. The effect
SHALL be as specified in
Section 5.6.1. The
notificationURI
parameter both identifies a
specific binding of the
ALECallback interface
and specifies addressing
information meaningful to
that binding. See Part II.

notifi-
cationURI

String

[result] void

unsubscribe specName String Removes a subscriber having
the specified
notificationURI from

notify-
cationURI

String

 Copyright © 2004–2009 EPCglobal®, All Rights Reserved. Page 79 of 229

Method Argument/
Result

Type Description

[result] void the set of current subscribers
of the ECSpec named
specName. The effect
SHALL be as specified in
Section 5.6.1.

poll specName String Requests an activation of the
ECSpec named specName,
returning the results from the
next event cycle to complete,
as specified in Section 5.6.1.

The ALE implementation
MAY provide a means to
abort an outstanding poll
call, by explicit client action,
by timeout, or by some other
means. If such a means is
provided, the effect on the
ECSpec lifecycle of aborting
the poll call SHALL be as
specified in Section 5.6.1.

[result] ECReports

immediate spec ECSpec Creates an unnamed ECSpec
according to spec, and
immediately requests its
activation. The behavior
SHALL be, as specified in
Section 5.6.2.

The ALE implementation
MAY provide a means to
abort an outstanding
immediate call, by
explicit client action, by
timeout, or by some other
means. If such a means is
provided, the effect on the
ECSpec lifecycle of aborting
the immediate call
SHALL be as specified in
Section 5.6.2.

[result] ECReports

getSubscribers specName String Returns an unordered,

 Copyright © 2004–2009 EPCglobal®, All Rights Reserved. Page 80 of 229

Method Argument/
Result

Type Description

[result] List<String> possibly empty list of the
notification URIs
corresponding to each of the
current subscribers for the
ECSpec named specName.

getStandardVersion [result] String Returns a string that
identifies what version of the
specification this
implementation of the
Reading API complies with,
as specified in Section 4.3.

getVendorVersion [result] String Returns a string that
identifies what vendor
extensions this
implementation of the
Reading API provides, as
specified in Section 4.3.

Table 28. ALE Interface Methods 2109

2110
2111
2112
2113
2114
2115
2116

2118
2119
2120
2121

The primary data types associated with the ALE Reading API are the ECSpec, which
specifies how an event cycle is to be calculated, and the ECReports, which contains
one or more reports generated from one activation of an ECSpec. ECReports
instances are both returned from the poll and immediate methods, and also sent to
subscribers when ECSpecs are subscribed to using the subscribe method. The next
two sections, Section 8.2 and Section 8.3, specify the ECSpec and ECReports data
types in full detail.

8.1.1 Error Conditions 2117
Methods of the ALE Reading API signal error conditions to the client by means of
exceptions. The following exceptions are defined. All the exception types in the
following table are extensions of a common ALEException base type, which contains
one string element giving the reason for the exception.

 Copyright © 2004–2009 EPCglobal®, All Rights Reserved. Page 81 of 229

Exception Name Meaning
SecurityException The operation was not permitted due to an

access control violation or other security
concern. If the Reading API
implementation is associated with an
implementation of the Access Control API
(Section 11), the Reading API
implementation SHALL raise this
exception if the client was not granted
access rights to the called method as
specified in Section 11. Other,
implementation-specific circumstances
may cause this exception; these are
outside the scope of this specification.

DuplicateNameException The specified ECSpec name already
exists. Note that the existence of a
CCSpec having the same name does not
cause this exception; ECSpecs and
CCSpecs are in different namespaces.

ECSpecValidationException The specified ECSpec is invalid. The
complete list of rules for generating this
exception is specified in Section 8.2.14.

InvalidURIException The URI specified for a subscriber does
not conform to URI syntax as specified in
[RFC2396], does not name a binding of
the ALECallback interface recognized
by the implementation, or violates syntax
or other rules imposed by a particular
binding.

NoSuchNameException The specified ECSpec name does not
exist.

NoSuchSubscriberException The specified subscriber does not exist.
DuplicateSubscriptionException The specified ECSpec name and

subscriber URI is identical to a previous
subscription that was created and not yet
unsubscribed.

 Copyright © 2004–2009 EPCglobal®, All Rights Reserved. Page 82 of 229

Exception Name Meaning
ImplementationException A generic exception raised by the

implementation for reasons that are
implementation-specific. This exception
contains one additional element: a
severity member whose values are
either ERROR or SEVERE. ERROR
indicates that the ALE implementation is
left in the same state it had before the
operation was attempted. SEVERE
indicates that the ALE implementation is
left in an indeterminate state.

Table 29. Exceptions in the ALE Interface 2122
2123
2124
2125
2126
2127

The exceptions that may be raised by each ALE method are indicated in the table below.
An ALE implementation SHALL raise the appropriate exception listed below when the
corresponding condition described above occurs. If more than one exception condition
applies to a given method call, the ALE implementation may raise any of the exceptions
that applies.

ALE Method Exceptions
define DuplicateNameException

ECSpecValidationException
SecurityException
ImplementationException

undefine NoSuchNameException
SecurityException
ImplementationException

getECSpec NoSuchNameException
SecurityException
ImplementationException

getECSpecNames SecurityException
ImplementationException

subscribe NoSuchNameException
InvalidURIException
DuplicateSubscriptionException
SecurityException
ImplementationException

unsubscribe NoSuchNameException
NoSuchSubscriberException
InvalidURIException
SecurityException
ImplementationException

 Copyright © 2004–2009 EPCglobal®, All Rights Reserved. Page 83 of 229

ALE Method Exceptions
poll NoSuchNameException

SecurityException
ImplementationException

immediate ECSpecValidationException
SecurityException
ImplementationException

getSubscribers NoSuchNameException
SecurityException
ImplementationException

getStandardVersion ImplementationException

getVendorVersion ImplementationException

Table 30. Exceptions Raised by each ALE Interface Method 2128

2130
2131
2132
2133
2134

8.2 ECSpec 2129
An ECSpec describes an event cycle and one or more reports that are to be generated
from it. It contains a list of logical Readers whose data are to be included in the event
cycle, a specification of how the boundaries of event cycles are to be determined, and a
list of specifications each of which describes a report to be generated from this event
cycle.

ECSpec 2135
logicalReaders : List<String> // List of logical reader 2136
names 2137
boundarySpec : ECBoundarySpec 2138
reportSpecs : List<ECReportSpec> 2139
includeSpecInReports : Boolean 2140
primaryKeyFields : List<String> // List of fieldnames 2141
strings 2142
<<extension point>> 2143
--- 2144

2145 The ALE implementation SHALL interpret the fields of an ECSpec as follows.

Field Type Description
logicalReaders List<String> An unordered list that

specifies one or more
logical readers that are used
to acquire tags.

 Copyright © 2004–2009 EPCglobal®, All Rights Reserved. Page 84 of 229

Field Type Description
boundarySpec ECBoundarySpec Specifies the starting and

stopping conditions for
event cycles. See
Section 8.2.1.

reportSpecs List<ECReportSpec> An ordered list that
specifies one or more
reports to be included in the
output from each event
cycle. See Section 8.2.5.

includeSpecInReports Boolean If true, specifies that each
ECReports instance
generated from this ECSpec
SHALL include a copy of
the ECSpec. If false, each
ECReports instance
SHALL NOT include a
copy of the ECSpec.

primaryKeyFields List<String> (Optional) An ordered list
that specifies a set of fields
which together constitute
the “primary key” for
determining Tag
uniqueness, as described
below. Each element of the
list is a fieldname.

If omitted, the ALE
implementation SHALL use
only the epc field to
determine Tag uniqueness,
as described below. This
gives back-compatibility
with ALE 1.0.

Table 31. ECSpec Fields 2146

2147
2148
2149

2151

2153

The define and immediate methods SHALL raise an
ECSpecValidationException if any of the following are true for an ECSpec
instance:

• The logicalReaders parameter is null, omitted, is an empty list, or contains any 2150
logical reader names that are not known to the implementation.

• The boundarySpec parameter is null or omitted, or the specified boundarySpec 2152
leads to an ECSpecValidationException as specified in Section 8.2.1.

 Copyright © 2004–2009 EPCglobal®, All Rights Reserved. Page 85 of 229

• The reportSpecs parameter is null, omitted, empty, or any of the members of 2154
reportSpecs leads to an ECSpecValidationException as specified in
Section

2155
2156

2159
2160
2161

2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174

8.2.5.

• Any member of the specified primaryKeyFields is not a known fieldname. 2157

• The implementation does not support the specified primaryKeyFields value 2158
with the specified logical readers. An implementation SHALL NOT, however, raise
the exception if primaryKeyFields is omitted or its value is a list consisting of
the single element epc.

The primaryKeyFields parameter is a list of strings, each one of which is a
fieldname naming a field that contributes to a “primary key” for determining Tag
uniqueness. As an ALE implementation accumulates Tags during an event cycle, the
implementation SHALL consider two Tags to be the same if both tags have the exact
same values in all of the primary key fields. The ALE implementation SHALL also use
the same rule to determine equality in implementing the ADDITIONS and DELETIONS
values of ECReportSetSpec (Section 8.2.6) and the reportOnlyOnChange
feature of ECReportSpec (Section 8.2.5). If accessing any of the primary key fields
on a Tag causes a “field not found” or “operation not possible” condition, then that Tag
SHALL be omitted from the event cycle. If the primaryKeyFields parameter is
empty or omitted, the ALE implementation SHALL behave as though
primaryKeyFields was set to a list containing the single element epc (this gives
behavior compatible with ALE 1.0).

Explanation (non-normative): The primaryKeyFields parameter allows an 2175
implementation to optimize its interaction with Tags, because the implementation may 2176
avoid reading fields of a Tag if its primary key fields are recognized to be identical to a 2177
previously read Tag. The client application must set primaryKeyFields based on its 2178
knowledge that (a) only one Tag with a given set of primary key values will be visible 2179
within any given event cycle; or (b) multiple Tags having identical primary key values 2180
will also have identical values for any other fields relevant to the ECSpec; or (c) if 2181
multiple Tags have identical primary key values, the values read from any one such Tag 2182
or combination of such Tags are acceptable to the application. If an implementation 2183
encounters two or more Tags having identical primary key values within the same event 2184
cycle, the implementation is free to use any one or any combination of those Tags to 2185
supply the values for other fields that are needed by the ECSpec. For example, an 2186
implementation may choose to randomly pick which tag to retrieve the data from, or it 2187
may pick the first or last tag seen, and so forth. 2188

Because some Readers may implicitly perform duplicate removal using a fixed set of 2189
primary key fields, it may not be possible to implement a given primaryKeyFields 2190
setting for a given logical reader. For this reason, an implementation may raise 2191
ECSpecValidationException if the primaryKeyFields setting cannot be 2192
implemented. 2193

 Copyright © 2004–2009 EPCglobal®, All Rights Reserved. Page 86 of 229

8.2.1 ECBoundarySpec 2194
An ECBoundarySpec specifies how the beginning and end of event cycles are to be
determined.

2195
2196

ECBoundarySpec 2197
startTrigger : ECTrigger // deprecated 2198
startTriggerList : List<ECTrigger> 2199
repeatPeriod : ECTime 2200
stopTrigger : ECTrigger // deprecated 2201
stopTriggerList : List<ECTrigger> 2202
duration : ECTime 2203
stableSetInterval : ECTime 2204
whenDataAvailable : Boolean 2205
<<extension point>> 2206
--- 2207

2208
2209

The ALE implementation SHALL interpret the fields of an ECBoundarySpec as
follows.

Field Type Description
startTrigger ECTrigger (Optional) This parameter is

deprecated in ALE 1.1, and is
provided for back-compatibility
with ALE 1.0. If the
startTrigger parameter is
specified with value T, the ALE
implementation SHALL treat it in
the same way as if the
startTriggerList parameter
included T as one of its members.

startTriggerList List<ECTrigger> (Optional) An unordered list that
specifies zero or more triggers that
may start a new event cycle for this
ECSpec.

repeatPeriod ECTime (Optional) Specifies an interval of
time for starting a new event cycle
for this ECSpec, relative to the start
of the previous event cycle.

 Copyright © 2004–2009 EPCglobal®, All Rights Reserved. Page 87 of 229

Field Type Description
stopTrigger ECTrigger (Optional) This parameter is

deprecated in ALE 1.1, and is
provided for back-compatibility
with ALE 1.0. If the
stopTrigger parameter is
specified with value T, the ALE
implementation SHALL treat it in
the same way as if the
stopTriggerList parameter
included T as one of its members.

stopTriggerList List<ECTrigger> (Optional) An unordered list that
specifies zero or more triggers that
may stop an event cycle for this
ECSpec.

duration ECTime (Optional) Specifies an interval of
time for stopping an event cycle for
this ECSpec, relative to the start of
the event cycle.

If omitted or equal to zero, has no
effect on the stopping of the event
cycle.

stableSetInterval ECTime (Optional) Specifies that an event
cycle may be stopped if no new tags
are read within the specified
interval.

If omitted or equal to zero, has no
effect on the stopping of the event
cycle.

whenDataAvailable Boolean (Optional) If true, specifies that an
event cycle may be stopped when
any Tag is read that matches the
filter conditions of at least one
ECReportSpec within this
ECSpec.

If omitted or false, has no effect on
the stopping of the event cycle.

Table 32. ECBoundarySpec Fields 2210

2211
2212
2213

The define and immediate methods SHALL raise an
ECSpecValidationException if any of the following are true for an
ECBoundarySpec instance:

 Copyright © 2004–2009 EPCglobal®, All Rights Reserved. Page 88 of 229

• A negative number is specified for any of the ECTime values duration, 2214
repeatPeriod, and stableSetInterval. 2215

2217
2218
2219

2221
2222
2223

2224
2225
2226
2227
2228
2229
2230

2231
2232
2233
2234
2235
2236
2237

2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250

2253
2254

• The value of the startTrigger or stopTrigger, or any element of 2216
startTriggerList or stopTriggerList does not conform to URI syntax as
defined by [RFC2396], or is a URI that is not supported by the ALE implementation.
Note that an empty string does not conform to URI syntax as defined by [RFC2396].

• No stopping condition is specified; i.e., stopTrigger is omitted or null, 2220
stopTriggerList is empty, duration is zero or omitted,
stableSetInterval is zero or omitted, whenDataAvailable is false, and no
vendor extension stopping condition is specified.

In the description below, the phrase “the set of start triggers” refers to all start triggers
specified in the startTrigger and startTriggerList parameters, excluding
nulls and empty strings. Likewise, the phrase “the set of stop triggers” refers to all stop
triggers specified in the stopTrigger and stopTriggerList parameters,
excluding nulls and empty strings. The phrase “if specified” used in reference to
repeatPeriod, duration, or stableSetInterval means that the parameter is
specified and is a positive (non-zero) number.

The boundarySpec parameter of ECSpec (of type ECBoundarySpec) specifies
starting and stopping conditions as referred to in the ECSpec lifecycle specified in
Sections 5.6.1 and 5.6.2. Within that description, “arrival of a start trigger” means that
the ALE implementation receives any of the triggers specified in the set of start triggers
for this ECSpec, and “repeat period” means the value of the repeatPeriod parameter,
if specified. The phrase “a stopping condition has occurred” means the first of the
following to occur:

• The duration, when specified, expires (measured from the start of the event cycle). 2238

• When the stableSetInterval is specified, no new Tags are read by any Reader 2239
for the specified interval (i.e., the set of Tags being accumulated by the event cycle is
stable for the specified interval). In this context, “new” is to be interpreted
collectively among Readers contributing to this event cycle. For example, suppose a
given event cycle is accumulating data from Readers A and B. If Reader A completes
a reader cycle containing Tag X, then subsequently Reader B completes a different
reader cycle containing the same Tag X, then the occurrence of Tag X in B’s reader
cycle is not considered “new” for the purposes of evaluating the
stableSetInterval. Note that in the context of the stableSetInterval,
the term “stable” only implies that no new Tags are detected; it does not imply that
previously detected Tags must continue to be detected. That is, only additions, and
not deletions, are considered in determining that the Tag set is “stable.”

• Any one of the stop triggers specified in the set of stop triggers is received. 2251

• The whenDataAvailable parameter is true, and any Tag is read that matches the 2252
filter conditions of at least one ECReportSpec within this ECSpec. If several
matching Tags are read in a single reader cycle, the implementation MAY terminate

 Copyright © 2004–2009 EPCglobal®, All Rights Reserved. Page 89 of 229

the event cycle after receiving all of those Tags (that is, the implementation does not
have to consider only one of those Tags as terminating the event cycle, saving the
others for future event cycles).

2255
2256
2257

Explanation (non-normative) An event cycle begins when the first start condition (repeat 2258
period or one of the start triggers) occurs. If no start triggers are specified, the first event 2259
cycle begins immediately after the ECSpec becomes requested, otherwise the ECSpec 2260
waits in the requested state until a trigger arrives. Thereafter, if neither a repeat period 2261
or any start triggers are specified, another event cycle begins immediately after the prior 2262
one ends. 2263

Also, if the repeatPeriod expires while an event cycle is in progress, it does not 2264
terminate the event cycle. The event cycle terminates only when one of the stopping 2265
conditions specified above becomes true. If, by that time, the ECSpec has not 2266
transitioned to the unrequested state, then a new event cycle will start immediately, 2267
following the second rule for repeatPeriod (because the repeatPeriod has 2268
expired, the start condition is immediately fulfilled). 2269

Likewise, an event cycle ends when the first stopping condition occurs. For example, if 2270
both duration and stableSetInterval are specified, then the event cycle 2271
terminates when the duration expires, even if the reader field has not been stable for 2272
the stableSetInterval. But if the set of Tags is stable for 2273
stableSetInterval, the event cycle terminates even if the total time is shorter than 2274
the specified duration. 2275

Start conditions have no effect while an event cycle is active, nor do stopping conditions 2276
have an effect when an event cycle is not in progress. For example, if a second start 2277
trigger is received while an event cycle is active, it has no effect. For this reason, if a 2278
given start trigger is specified twice, it has the same effect as if it were specified only 2279
once. 2280

2282
8.2.2 ECTime 2281
ECTime denotes a span of time measured in physical time units.

ECTime 2283
duration : Long 2284
unit : ECTimeUnit 2285
--- 2286

2287 The ALE implementation SHALL interpret the fields of an ECTime instance as follows.

Field Type Description
duration Long The amount of time, in units

specified by unit.

 Copyright © 2004–2009 EPCglobal®, All Rights Reserved. Page 90 of 229

Field Type Description
unit ECTimeUnit The unit of time represented by one

unit of duration.

Table 33. ECTime Fields 2288

2289
2290

2292
2293

Note that ECTime is used both by the Reading API and the Writing API. Unless
otherwise noted, the interpretation of an ECTime instance is the same in both APIs.

8.2.3 ECTimeUnit 2291
ECTimeUnit is an enumerated type denoting different units of physical time that may
be used in an ECBoundarySpec.

<<Enumerated Type>> 2294
ECTimeUnit 2295

MS 2296
<<extension point>> 2297

2298
2299

The ALE implementation SHALL interpret an instance of ECTimeUnit as specified in
the following table.

ECTimeUnit Unit of Time of duration field of ECTime

MS Milliseconds

Table 34. ECTimeUnit Fields 2300

2301
2302
2303

2305
2306
2307
2308
2309
2310

2311
2312
2313
2314
2315
2316
2317

Note that ECTimeUnit is used both by the Reading API and the Writing API. Unless
otherwise noted, the interpretation of an ECTimeUnit instance is the same in both
APIs.

8.2.4 ECTrigger 2304
ECTrigger denotes a URI that is used to specify a start or stop trigger for an event
cycle or command cycle (see Section 5.6 for explanation of start and stop triggers). The
interpretation of this URI is determined by the ALE implementation; the kinds and means
of triggers supported is intended to be a point of extensibility. URIs that begin with the
string urn:epcglobal:, however, are reserved for standardized trigger URIs whose
meaning is governed by this or other EPCglobal specifications.

Not all URIs beginning with urn:epcglobal: are valid trigger URIs. An
implementation SHALL raise an ECSpecValidationException if presented with a
URI beginning with urn:epcglobal: that is not valid according to this specification
or any other EPCglobal specification that defines a standardized trigger URI. Not all
URIs specified in EPCglobal specifications are required to be implemented. An
implementation MAY raise an ECSpecValidationException if presented with a
URI beginning with urn:epcglobal: that the implementation chooses not to support.

 Copyright © 2004–2009 EPCglobal®, All Rights Reserved. Page 91 of 229

Otherwise, the implementation SHALL interpret the URI according to the relevant
specification.

2318
2319

2320
2321
2322
2323

2324
2325

2326
2327
2328
2329
2330

2331

2332
2333

2334

URIs not beginning with urn:epcglobal: MAY be interpreted by an implementation
in an implementation-dependent manner. If such a URI is not valid according to the
implementation-specific rules, the implementation SHALL raise an
ECSpecValidationException.

Note that ECTrigger is used both by the Reading API and the Writing API. Unless
otherwise noted, the interpretation of an ECTrigger instance is the same in both APIs.

8.2.4.1 Real-time Clock Standardized Trigger
URIs beginning with the string urn:epcglobal:ale:trigger:rtc: are reserved
for triggers as specified below. An ALE implementation MAY provide support for
trigger URIs of this form; if it does, the ALE implementation SHALL conform to the
following specification for all such URIs valid according to the specification below.

A real-time clock trigger takes one of the two following forms:

urn:epcglobal:ale:trigger:rtc:period.offset
urn:epcglobal:ale:trigger:rtc:period.offset.timezone

where period, offset, and timezone are as specified below.

Field Syntax Meaning
period A decimal integer numeral in the

range 1 ≤ period ≤ 86400000.
The period, in milliseconds,
between consecutive triggers
occurring within one day. See
below.

offset A decimal integer numeral greater
than or equal to zero and less than
the specified period.

The interval, in milliseconds,
between midnight and the first
trigger delivered after midnight.
See below.

timezone A time zone offset specifier having
one of the three following forms:
+hh:mm

-hh:mm

Z

Where h and m each denote a single
decimal digit.

The time zone in which to interpret
“midnight” in the specification of
the trigger timing below. +hh:mm
indicates a positive offset (in hours
and minutes) from UTC, -hh:mm
indicates a negative offset from
UTC, and Z indicates a zero offset
from UTC.

Table 35. Real-time Clock Trigger URI Fields 2335
2336
2337
2338

If an ALE implementation chooses to implement triggers of this form, it SHALL interpret
a trigger of this form as follows. The trigger is delivered each time the number of
milliseconds past midnight modulo period equals offset. “Midnight” refers to

 Copyright © 2004–2009 EPCglobal®, All Rights Reserved. Page 92 of 229

midnight in the specified time zone, which if omitted defaults to some implementation-
dependent default value (typically the time zone configured in the operating system or
other platform in which the ALE implementation is running).

2339
2340
2341

Example (non-normative) The following trigger URI denotes a trigger that occurs every 2342
hour on the hour: 2343
urn:epcglobal:ale:trigger:rtc:3600000.0 2344

The following two trigger URIs denote a pair of one-minute triggers that alternate. Each 2345
trigger occurs 30 seconds after the other trigger. 2346
urn:epcglobal:ale:trigger:rtc:60000.0 2347
urn:epcglobal:ale:trigger:rtc:60000.30000 2348

Note that if the specified period does not divide evenly into the number of milliseconds 2349
in a day (86,400,000), then the trigger will not be perfectly periodic, because the pattern 2350
will be realigned to the specified offset each day at midnight. 2351

2353
2354
2355
2356
2357
2358
2359
2360

8.2.5 ECReportSpec 2352
An ECReportSpec specifies one report to be included in the list of reports that results
from executing an event cycle. An ECSpec contains a list of one or more
ECReportSpec instances. When an event cycle completes, an ECReports instance
is generated, unless suppressed as described below. An ECReports instance contains
one or more ECReport instances, each corresponding to an ECReportSpec instance
in the ECSpec that governed the event cycle. The number of ECReport instances may
be fewer than the number of ECReportSpec instances, due to the rules for suppression
of individual ECReport instances as described below.

ECReportSpec 2361
reportName : String 2362
reportSet : ECReportSetSpec 2363
filterSpec : ECFilterSpec 2364
groupSpec : ECGroupSpec 2365
output : ECReportOutputSpec 2366
reportIfEmpty : Boolean 2367
reportOnlyOnChange : Boolean 2368
statProfileNames : List<ECStatProfileName> 2369
<<extension point>> 2370
--- 2371

2372 The ALE implementation SHALL interpret the fields of an ECReportSpec as follows.

 Copyright © 2004–2009 EPCglobal®, All Rights Reserved. Page 93 of 229

Field Type Description
reportName String Specifies a name for reports

generated from this
ECReportSpec. The ALE
implementation SHALL copy
this name into the ECReport
instance generated from this
ECReportSpec.

reportSet ECReportSetSpec Specifies what set of Tags are
considered for reporting:
CURRENT, ADDITIONS, or
DELETIONS as described in
Section 8.2.6.

filterSpec ECFilterSpec Specifies how Tags are filtered
before inclusion in the report,
as specified in Section 8.2.7.

groupSpec ECGroupSpec Specifies how filtered Tags are
grouped together for reporting,
as specified in Section 8.2.9.

output ECReportOutputSpec Specifies which fields to report
from each Tag or a count, or
both, as specified in
Section 8.2.10.

reportIfEmpty Boolean Specifies whether to omit the
ECReport instance if the final
set of Tags is empty, as
specified below.

reportOnlyOnChange Boolean Specifies whether to omit the
ECReport instance if the set of
filtered Tags is unchanged
from the previous event cycle,
as specified below.

statProfileNames List<ECStatProfile
Name>

An ordered list that specifies
zero or more statistics profiles
that govern what statistics are
to be included in the report, as
specified in Section 8.3.9.

Table 36. ECReportSpec Fields 2373

2374
2375
2376

The define and immediate methods SHALL raise an
ECSpecValidationException if any of the following are true for an
ECReportSpec instance:

 Copyright © 2004–2009 EPCglobal®, All Rights Reserved. Page 94 of 229

• The specified reportName is an empty string or is not accepted by the 2377
implementation according to Section 4.5. 2378

2380

2382

2384

2386

2388
2389
2390

2392
2393
2394

2396
2397
2398
2399
2400
2401
2402
2403

2404
2405
2406
2407
2408
2409
2410
2411
2412
2413

• The specified reportName is a duplicate of another report name in the same 2379
ECSpec.

• The specified filterSpec leads to an ECSpecValidationException as 2381
specified in Section 8.2.7.

• The specified groupSpec leads to an ECSpecValidationException as 2383
specified in Section 8.2.9.

• The specified output leads to an ECSpecValidationException as specified 2385
in Section 8.2.10.

• Any element of statProfileNames is not the name of a known statistics profile. 2387

An ECReports instance SHALL include an ECReport instance corresponding to each
ECReportSpec in the governing ECSpec, in the same order specified in the ECSpec,
except that an ECReport instance SHALL be omitted under the following circumstances:

• If an ECReportSpec has reportIfEmpty set to false, then the corresponding 2391
ECReport instance SHALL be omitted from the ECReports for this event cycle if
the final, filtered set of Tags is empty (i.e., if the final Tag list would be empty, or if
the final count would be zero).

• If an ECReportSpec has reportOnlyOnChange set to true, then the 2395
corresponding ECReport instance SHALL be omitted from the ECReports for
this event cycle if the filtered set of Tags is identical to the filtered prior set of Tags,
where equality is tested by considering the primaryKeyFields as specified in the
ECSpec (see Section 8.2), and where the phrase ‘the prior set of Tags’ is as defined
in Section 8.2.6. This comparison takes place before the filtered set has been modified
based on reportSet or output parameters. The comparison also disregards
whether the previous ECReports was actually sent due to the effect of this
parameter, or the reportIfEmpty parameter.

When the processing of reportIfEmpty and reportOnlyOnChange results in all
ECReport instances being omitted from an ECReports for an event cycle, then the
delivery of results to subscribers SHALL be suppressed altogether. That is, a result
consisting of an ECReports having zero contained ECReport instances SHALL NOT
be sent to a subscriber. (Because an ECSpec must contain at least one
ECReportSpec, this can only arise as a result of reportIfEmpty or
reportOnlyOnChange processing.) This rule only applies to subscribers (event cycle
requestors that were registered by use of the subscribe method); an ECReports
instance SHALL always be returned to the caller of immediate or poll at the end of
an event cycle, even if that ECReports instance contains zero ECReport instances.

Explanation (non-normative): The reportName parameter is an arbitrary string that 2414
is copied to the ECReport instance created when this event cycle completes. The 2415

 Copyright © 2004–2009 EPCglobal®, All Rights Reserved. Page 95 of 229

purpose of the reportName parameter is so that clients can distinguish which of the 2416
ECReport instances that it receives corresponds to which ECReportSpec instance 2417
contained in the original ECSpec. This is especially useful in cases where fewer reports 2418
are delivered than there were ECReportSpec instances in the ECSpec, because 2419
reportIfEmpty=false or reportOnlyOnChange=true settings suppressed 2420
the generation of some reports. 2421

2422
2423
2424
2425

2427
2428
2429

The statProfileNames parameter is a list of ECStatProfileName, each of
which corresponds to a statistics profile that will be included in the ECReports. If the
ALE engine does not recognize any name in the list it SHALL raise an
ECSpecValidationException.

8.2.6 ECReportSetSpec 2426
ECReportSetSpec is an enumerated type denoting what set of Tags is to be
considered for filtering and output: all Tags read in the current event cycle, additions
from the previous event cycle, or deletions from the previous event cycle.

<<Enumerated Type>> 2430
ECReportSetSpec 2431

CURRENT 2432
ADDITIONS 2433
DELETIONS 2434
<<extension point>> 2435

2436
2437

An ALE implementation SHALL interpret an instance of ECReportSetSpec as
specified in the following table:

ECReportSetSpec
value

Meaning

CURRENT The set of tags considered for filtering and output SHALL be the set
of Tags read during the event cycle.

ADDITIONS The set of tags considered for filtering and output SHALL be the set
of Tags read during the event cycle, minus the prior set of Tags;
that is, the set of Tags that were read during the event cycle and not
members of the prior set of Tags. The meaning of "the prior set of
Tags" is specified below.

DELETIONS The set of tags considered for filtering and output SHALL be the
prior set of Tags, minus the set of Tags read during the event cycle;
that is, the set of Tags that were not read during the event cycle but
are members of the prior set of Tags. The meaning of "the prior set
of Tags" is specified below.

Table 37. ECReportSetSpec Values 2438

 Copyright © 2004–2009 EPCglobal®, All Rights Reserved. Page 96 of 229

The meaning of “the prior set of Tags” is as follows. For a given subscriber to an
ECSpec, beginning with the second event cycle to be completed after the subscribe
call, the prior set of Tags SHALL refer to the set of Tags read during the immediately
previous event cycle for that ECSpec. For the first event cycle to be completed after the
subscribe call for a given subscriber, and for a poll call, the prior set of Tags
SHALL refer to either the set of Tags read during some previous event cycle for that
ECSpec, or the empty set, at the discretion of the implementation. An ALE
implementation SHOULD provide documentation that specifies its behavior in these
cases.

2439
2440
2441
2442
2443
2444
2445
2446
2447

2449
8.2.7 ECFilterSpec 2448
An ECFilterSpec specifies what Tags are to be included in the final report.

ECFilterSpec 2450
includePatterns : List<String> // List of EPC patterns 2451
(deprecated) 2452
excludePatterns : List<String> // List of EPC patterns 2453
(deprecated) 2454
filterList : List<ECFilterListMember> 2455
<<extension point>> 2456
--- 2457

2458 The ALE implementation SHALL interpret the fields of an ECFilterSpec as follows.

Field Type Description
includePatterns List<String> This parameter is deprecated in ALE 1.1,

and is provided for back-compatibility
with ALE 1.0. If the
includePatterns parameter is
specified with pattern list L, the ALE
implementation SHALL treat it in the
same way as if the includePatterns
parameter were omitted and
filterList included an
ECFilterListMember whose
includeExclude parameter is set to
INCLUDE, whose fieldspec parameter
is set to an ECFieldSpec instance
whose fieldname parameter is set to
epc and whose datatype and format
parameters are omitted, and whose
patList parameter is set to L.

 Copyright © 2004–2009 EPCglobal®, All Rights Reserved. Page 97 of 229

Field Type Description
excludePatterns List<String> This parameter is deprecated in ALE 1.1,

and is provided for back-compatibility
with ALE 1.0. If the
excludePatterns parameter is
specified with pattern list L, the ALE
implementation SHALL treat it in the
same way as if the excludePatterns
parameter were omitted and
filterList included an
ECFilterListMember whose
includeExclude parameter is set to
EXCLUDE, whose fieldspec parameter
is set to an ECFieldSpec instance
whose fieldname parameter is set to
epc and whose datatype and format
parameters are omitted, and whose
patList parameter is set to L.

filterList List<ECFilter
ListMember>

Specifies an unordered list of filters, as
specified below.

Table 38. ECFilterSpec Fields 2459

2460
2461
2462

2464

2466

2468

2469
2470
2471
2472
2473

2474
2475
2476
2477
2478

The define and immediate methods SHALL raise an
ECSpecValidationException if any of the following are true for an
ECFilterSpec instance:

• Any element of includePatterns is not a syntactically valid epc-tag pattern 2463
as specified in Section 6.2.1.3.

• Any element of excludePatterns is not a syntactically valid epc-tag pattern 2465
as specified in Section 6.2.1.3.

• Any element of filterList leads to an ECSpecValidationException as 2467
specified in Section 8.2.8.

The ECFilterSpec implements a flexible filtering scheme based on a list of
ECFilterListMember instances. Each ECFilterListMember instance defines a
test to be applied to fields of a Tag to determine if the Tag should be included in the
report. A Tag SHALL be included in the final report if it passes the test specified by
every ECFilterListMember in filterList, as defined below.

Each ECFilterListMember specifies either an inclusive or an exclusive test based
on the value of one field of a Tag. If the includeExclude parameter of an
ECFilterListMember is INCLUDE, then the Tag passes the test if and only if
accessing the field does not cause a “field not found” or “operation not possible”
condition and the value of the field matches at least one pattern specified in the

 Copyright © 2004–2009 EPCglobal®, All Rights Reserved. Page 98 of 229

ECFilterListMember instance. If the includeExclude parameter of an
ECFilterListMember is EXCLUDE, then the Tag passes the test if and only if
accessing the field causes a “field not found” or “operation not possible” condition or the
value of the field does not match any pattern specified in the ECFilterListMember
instance.

2479
2480
2481
2482
2483

2484
2485

2486
2487
2488
2489
2490
2491
2492

2493
2494
2495
2496
2497
2498
2499

2501
2502

This can be expressed using the notation of Section 5 as follows, where R is the set of
Tags to be reported from a given event cycle, prior to filtering:

F(R) = { tag | tag ∈ R
 & (tag ∈ I1,1 | … | tag ∈ I1,n)
 & (tag ∈ I2,1 | … | tag ∈ I2,n)
 & …
 & (tag ∉ E1,1 & … & tag ∉ E1,n)
 & (tag ∉ E2,1 & … & tag ∉ E2,n)
 & … }

where Ii,j denotes the set of Tags matched by the jth pattern in the patList of the ith
member of filterList whose includeExclude flag is set to INCLUDE, and Ei,j
denotes the set of Tags matched by the jth pattern in the patList of the ith member of
filterList whose includeExclude flag is set to EXCLUDE. For the purposes of
this definition, includePatterns and excludePatterns are to be treated as
though they were additional entries in filterList, as described in the definition of
those two parameters in the table above.

8.2.8 ECFilterListMember 2500
An ECFilterListMember specifies filtering by comparing a single field of a Tag to a
set of patterns. This type is used in both the Reading API and the Writing API.

ECFilterListMember 2503
includeExclude : ECIncludeExclude // (INCLUDE or EXCLUDE) 2504
fieldspec : ECFieldSpec 2505
patList : List<String> // one or more patterns 2506
<<extension point>> 2507
--- 2508

2509
2510

The ALE implementation SHALL interpret the fields of an ECFilterListMember as
follows.

 Copyright © 2004–2009 EPCglobal®, All Rights Reserved. Page 99 of 229

Field Type Description
includeExclude ECIncludeExclude Specifies whether this

ECFilterListMember is inclusive
or exclusive. If this parameter is
INCLUDE, a Tag is considered to pass
the filter if the value in the specified
field matches any of the patterns in
patList. If this parameter is
EXCLUDE, a Tag is considered to pass
the filter it the value in the specified
field does not match any of the
patterns in patList.

fieldspec ECFieldSpec Specifies which field of the Tag is
considered in evaluating this filter, the
datatype of the field contents, and the
format for patterns that appear in
patList.

patList List<String> An unordered list that specifies the
patterns against which the value of the
specified Tag field is to be compared.
Each member of this list is a pattern
value conforming to the format
implied by fieldspec.

Table 39. ECFilterListMember Instances 2511

2512
2513
2514
2515

2519

2521

The define and immediate methods SHALL raise an
ECSpecValidationException or CCSpecValidationException (in the
Reading API or the Writing API, respectively) if any of the following are true for any
ECFilterListMember instance:

• The specified fieldspec is invalid (see Section 8.2.12). 2516

• The patList is empty. 2517

• Any element of patList does not conform to the syntax rules for patterns implied 2518
by the specified fieldspec.

8.2.9 ECGroupSpec 2520
ECGroupSpec defines how filtered EPCs are grouped together for reporting.

 Copyright © 2004–2009 EPCglobal®, All Rights Reserved.Page 100 of 229

ECGroupSpec 2522
fieldspec : ECFieldSpec 2523
patternList : List<String> // of pattern URIs 2524
<<extension point>> 2525
--- 2526

2527 The ALE implementation SHALL interpret the fields of an ECGroupSpec as follows.

Field Type Description
fieldspec ECFieldSpec (Optional) Specifies which field of the Tag is

used for grouping, the datatype of the field
contents, and the format for grouping patterns that
appear in patternList.

If this parameter is omitted, the ALE
implementation SHALL behave as though the
fieldspec parameter were set to an
ECFieldSpec instance whose fieldname
parameter is set to epc and whose datatype
and format parameters are omitted.

patternList List<String> An unordered list that specifies the grouping
patterns used to generate a group name from the
value of the specified Tag field. Each member of
this list is a grouping pattern value conforming to
the format implied by fieldspec.

Table 40. ECGroupSpec Fields 2528

2529
2530
2531

2534

2536

2538
2539

2540
2541
2542

The define and immediate methods SHALL raise an
ECSpecValidationException if any of the following are true for an
ECGroupSpec instance:

• The specified fieldspec is invalid (see Section 8.2.12). 2532

• The specified fieldspec implies a datatype and format for which no grouping 2533
pattern syntax is defined.

• Any element of patternList does not conform to the syntax rules for grouping 2535
patterns implied by the specified fieldspec.

• The elements of patternList are not disjoint, according to the definition of 2537
disjointedness defined by the datatype and format implied by the specified
fieldspec.

Every filtered Tag that is part of an event cycle SHALL be assigned to exactly one group
for purposes of reporting. The group name is determined by the value of the field
specified by fieldspec, in the following manner. If the field value matches one of the

 Copyright © 2004–2009 EPCglobal®, All Rights Reserved.Page 101 of 229

grouping patterns in patternList, the group name SHALL be computed from the
field value according to the formula specified in the definition of the datatype and format
implied by fieldspec. If the field value does not match any of the grouping patterns in
patternList, or if accessing the field causes a “field not found” or “operatio not
possible” condition, the Tag SHALL be assigned to a special “default group.” The name
of the default group SHALL be null. Note that a Tag cannot match more than one
grouping pattern in patternList because of the disjointedness constraint.

2543
2544
2545
2546
2547
2548
2549

2550
2551

2553

If the pattern list is empty (or if the group parameter of the ECReportSpec is null or
omitted), then all Tags SHALL be assigned to the default group.

8.2.10 ECReportOutputSpec 2552
ECReportOutputSpec specifies how the final set of EPCs is to be reported.

ECReportOutputSpec 2554
includeEPC : Boolean 2555
includeTag : Boolean 2556
includeRawHex : Boolean 2557
includeRawDecimal : Boolean 2558
includeCount : Boolean 2559
fieldList : List<ECReportOutputFieldSpec> 2560
<<extension point>> 2561
--- 2562

2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574

The parameters of ECReportOutputSpec determine which parameters are present in
each ECReportGroup instance that appears as part of an ECReport generated from
this ECReportSpec. If any of includeEPC, includeTag, includeRawHex, or
includeRawDecimal are true, or if fieldList is non-empty, the ALE
implementation SHALL set the groupList parameter of each ECReportGroup
instance to an ECReportGroupList instance, which in turn SHALL contain a list of
ECReportGroupListMember instances having parameters set according to the table
below. Otherwise, the ALE implementation SHALL set the groupList parameter to
null. If includeCount is true, the ALE implementation SHALL set the
groupCount parameter of each ECReportGroup instance to an
ECReportGroupCount instance, with parameters set according to the table below.
Otherwise, the ALE implementation SHALL set the groupCount parameter to null.

 Copyright © 2004–2009 EPCglobal®, All Rights Reserved.Page 102 of 229

Field Type Description
includeEPC Boolean If true, each generated

ECReportGroupListMember
instance SHALL include an epc
parameter containing the value of the
epc field of the Tag represented in
the epc-pure format.

If false, each
ECReportGroupListMember
SHALL NOT include the epc
parameter.

includeTag Boolean If true, each generated
ECReportGroupListMember
instance SHALL include a tag
parameter containing the value of the
epc field of the Tag represented in
the epc-tag format.

If false, each
ECReportGroupListMember
SHALL NOT include the tag
parameter.

includeRawHex Boolean If true, each generated
ECReportGroupListMember
instance SHALL include a rawHex
parameter containing the value of the
epc field of the Tag represented in
the epc-hex format.

If false, each
ECReportGroupListMember
SHALL NOT include the rawHex
parameter.

 Copyright © 2004–2009 EPCglobal®, All Rights Reserved.Page 103 of 229

Field Type Description
includeRawDecimal Boolean If true, each generated

ECReportGroupListMember
instance SHALL include a
rawDecimal parameter containing
the value of the epc field of the Tag
represented in the epc-decimal
format.

If false, each
ECReportGroupListMember
SHALL NOT include the
rawDecimal parameter.

includeCount Boolean If includeCount is true, the
groupCount parameter of each
generated ECReportGroup instance
SHALL be set to an
ECReportGroupCount instance,
giving the number of Tags in the
group.

If false, the groupCount parameter
in each generated ECReportGroup
instance SHALL be set to null.

fieldList List<ECReport-
OutputField-
Spec>

An ordered list of fields to include in
the result. If specified and non-empty,
each generated
ECReportGroupListMember
instance SHALL include a
fieldList parameter, with contents
as specified in Section 8.3.6.

If empty or null, each generated
ECReportGroupListMember
SHALL NOT include the
fieldList parameter.

Table 41. ECReportOutputSpec Instance 2575

2576
2577
2578

2580

The define and immediate methods SHALL raise an
ECSpecValidationException if any of the following are true for any
ECReportOutputSpec instance:

• Two members of fieldList have the same name (after applying defaults as 2579
specified in Section 8.2.11).

 Copyright © 2004–2009 EPCglobal®, All Rights Reserved.Page 104 of 229

• Any member of fieldList has a fieldspec parameter that is an invalid 2581
ECFieldSpec (see Section 8.2.12). 2582

2584
2585

2587
2588

• All five booleans includeEPC, includeTag, includeRawHex, 2583
includeRawDecimal, and includeCount are false, fieldList is empty or
omitted, and there is no vendor extension to ECReportOutputSpec.

8.2.11 ECReportOutputFieldSpec 2586
An ECReportOutputFieldSpec specifies a Tag field to be included in an event
cycle report.

ECReportOutputFieldSpec 2589
fieldspec : ECFieldSpec 2590
name : String // optional 2591
includeFieldSpecInReport : Boolean // optional 2592
<<extension point>> 2593

2594
2595

The ALE implementation SHALL interpret the fields of an
ECReportOutputFieldSpec as follows.

Field Type Description
fieldspec ECFieldSpec Specifies which field of the Tag is to be

included in the report. The fieldspec
may contain a “pattern” fieldname, in
which case zero or more fields matching
the pattern are read and included in the
report.

name String (Optional) Specifies a name that is
included in the corresponding
ECReportGroupListMember
instance.

If empty or null, the fieldname
parameter of the specified fieldspec
SHALL be used as the name.

includeFieldSpec-
InReport

Boolean (Optional) If true, the corresponding
ECReportGroupListMember
instance SHALL include a copy of the
specified fieldspec.

If omitted or false, the corresponding
ECReportGroupListMember
instance SHALL NOT include a
fieldspec.

 Copyright © 2004–2009 EPCglobal®, All Rights Reserved.Page 105 of 229

Table 42. ECReportOutputFieldSpec Fields 2596

2598
8.2.12 ECFieldSpec 2597
An ECFieldSpec encodes a fieldspec as defined in Section 5.4.

ECFieldSpec 2599
fieldname : String 2600
datatype : String 2601
format : String 2602
<<extension point>> 2603
--- 2604

2605
2606
2607

2608

The ECFieldSpec type is used in many places within the ALE Reading API and ALE
Writing API. An ALE implementation SHALL interpret an ECFieldSpec instance as
follows:

Field Type Description
fieldname String Specifies the fieldname; that is, which field of the Tag to

operate upon. When used in an
ECReportOutputFieldSpec, may be a “pattern”
fieldname that specifies zero or more fields matching the
pattern.

datatype String (Optional) Specifies what kind of data values the field
holds, and how they are encoded into Tag memory.

If omitted, the ALE implementation SHALL behave as
though the default datatype associated with fieldname
were specified instead.

format String (Optional) Specifies the syntax used to present field
values through the ALE interface.

If omitted, the ALE implementation SHALL behave as
though the default format associated with fieldname
were specified instead.

Table 43. ECFieldSpec Fields 2609

2610
2611

2613
2614
2615

An ALE implementation SHALL consider an ECFieldSpec instance invalid if any of
the following are true:

• The value of fieldname is not a valid absolute address fieldname as defined in 2612
Section 6.1.9.1, a valid variable fieldname as defined in Section 6.1.9.2, a valid
variable pattern fieldname as defined in Section 6.1.9.3, the name of a built-in
fieldname as defined in Section 6.1 or otherwise provided by the ALE

 Copyright © 2004–2009 EPCglobal®, All Rights Reserved.Page 106 of 229

implementation as a vendor extension, or a user-defined fieldname defined via the
Tag Memory API (Section

2616
2617

2619
2620

2623
2624

2625
2626
2627

2629
2630

7).

• The value of fieldname is a valid variable pattern fieldname as defined in 2618
Section 6.1.9.3, but the ECFieldSpec instance is in some context other than an
ECReportOutputFieldSpec instance.

• The value of datatype is not a valid datatype for the specified fieldname. 2621

• The value of format is not a valid format for the specified fieldname and 2622
specified datatype (or the default datatype for the specified fieldname, if
datatype is omitted).

Each context where ECFieldSpec is used elsewhere in the specification of the Reading
API and Writing API specifies what happens if an ECFieldSpec is invalid. (In
general, an appropriate validation exception is raised.)

8.2.13 ECStatProfileName 2628
Each valid value of ECStatProfileName names a statistics profile that can be
included in an ECReports.

<< Enumerated Type>> 2631
ECStatProfileName 2632

TagTimestamps 2633
<<extension point>> 2634

2635
2636

2638
2639

2641

2643

2646

2648
2649

This specification defines one statistics profile named TagTimestamps which vendors
MAY implement; vendors MAY also implement their own proprietary profiles.

8.2.14 Validation of ECSpecs 2637
The define and immediate methods of the ALE API (Section 8.1) SHALL raise an
ECSpecValidationException if any of the following are true:

• The specified specName is an empty string or is not accepted by the implementation 2640
according to Section 4.5.

• The logicalReaders parameter of ECSpec is null, omitted, is an empty list, or 2642
contains any logical reader names that are not known to the implementation.

• The boundarySpec parameter of ECSpec is null or omitted. 2644

• The duration, stableSetInterval, or repeatPeriod parameter of 2645
ECBoundarySpec is negative.

• The value of the startTrigger or stopTrigger parameter of 2647
ECBoundarySpec, or any element of the startTriggerList or
stopTriggerList parameter of ECBoundarySpec does not conform to URI

 Copyright © 2004–2009 EPCglobal®, All Rights Reserved.Page 107 of 229

syntax as defined by [RFC2396], or is a URI that is not supported by the ALE
implementation. Note that an empty string does not conform to URI syntax as defined
by [RFC2396].

2650
2651
2652

2654
2655
2656

2659

2662
2663

2665

2667

2669
2670

2672

2674

2676
2677

2679
2680

2682

2684

2686

• No stopping condition is specified in ECBoundarySpec; i.e., stopTrigger is 2653
omitted or null, stopTriggerList is empty, whenDataAvailable is false,
and neither duration nor stableSetInterval nor any vendor extension
stopping condition is specified.

• The reportSpecs parameter of ECSpec is null, omitted, or empty. 2657

• Any ECReportSpec instance has a reportName that is an empty string or that is 2658
not accepted by the implementation according to Section 4.5.

• Two ECReportSpec instances have identical values for their reportName fields. 2660

• Any member of includePatterns or excludePatterns within 2661
ECFilterSpec does not conform to the epc-tag format’s filter syntax as defined
in Section 6.2.1.3.

• Two members of the fieldList parameter of any ECReportOutputSpec 2664
instance have the same name (after applying defaults as specified in Section 8.2.11).

• The fieldspec parameter of any ECFilterListMember instance is invalid 2666
according to Section 8.2.12.

• The patList parameter of any ECFilterListMember instance is empty, null, 2668
or omitted, or any element of patList does not conform to the syntax rules for
patterns implied by the specified fieldspec.

• The fieldspec parameter of ECGroupSpec is invalid according to 2671
Section 8.2.12.

• The fieldspec parameter of ECGroupSpec implies a datatype and format for 2673
which no grouping pattern syntax is defined.

• Any grouping pattern within the patternList parameter of ECGroupSpec does 2675
not conform to the syntax for grouping patterns implied by the specified
fieldspec.

• Any two grouping patterns within the patternList parameter of ECGroupSpec 2678
are not disjoint, according to the definition of disjointedness defined by the datatype
and format implied by the specified fieldspec.

• Any member of the fieldList parameter within ECReportOutputSpec is an 2681
invalid fieldspec according to Section 8.2.12.

• Any member of the primaryKeyFields parameter of ECSpec is not a known 2683
fieldname.

• The implementation does not support the specified primaryKeyFields value of 2685
ECSpec with the specified logical readers. An implementation SHALL NOT,

 Copyright © 2004–2009 EPCglobal®, All Rights Reserved.Page 108 of 229

however, raise the exception if primaryKeyFields is omitted or its value is a list
consisting of the single element epc.

2687
2688

2690
2691
2692

2694

2696

• For any ECReportOutputSpec instance, all five booleans includeEPC, 2689
includeTag, includeRawHex, includeRawDecimal, and includeCount
are false, fieldList is empty or omitted, and there is no vendor extension to
ECReportOutputSpec.

• Any value of ECStatProfileName is not recognized, or is recognized but the 2693
specified statistics report is not supported.

8.3 ECReports 2695
ECReports is the output from an event cycle.

ECReports 2697
specName : String 2698
date : dateTime 2699
ALEID : String 2700
totalMilliseconds : long 2701
initiationCondition : ECInitiationCondition 2702
initiationTrigger : ECTrigger 2703
terminationCondition : ECTerminationCondition 2704
terminationTrigger : ECTrigger 2705
ECSpec : ECSpec 2706
reports : List<ECReport> 2707
<<extension point>> 2708
--- 2709

2710
2711
2712
2713
2714
2715

The “meat” of an ECReports instance is the ordered list of ECReport instances, each
corresponding to an ECReportSpec instance in the event cycle’s ECSpec, and
appearing in the order corresponding to the ECSpec. In addition to the reports
themselves, ECReports contains a number of “header” fields that provide useful
information about the event cycle. The implementation SHALL include these fields
according to the following definitions:

Field Description
specName The name of the ECSpec that controlled this event cycle.

In the case of an ECSpec that was requested using the
immediate method (Section 8.1), this name is one
chosen by the ALE implementation.

 Copyright © 2004–2009 EPCglobal®, All Rights Reserved.Page 109 of 229

Field Description
date A representation of the date and time when the event

cycle ended. For bindings in which this field is
represented textually, an ISO-8601 compliant
representation SHOULD be used.

ALEID An identifier for the deployed instance of the ALE
implementation. The meaning of this identifier is
outside the scope of this specification.

totalMilliseconds The total time, in milliseconds, from the start of the
event cycle to the end of the event cycle.

initiationCondition Indicates what kind of event caused the event cycle to
initiate: the receipt of an explicit start trigger, the
expiration of the repeat period, or a transition to the
requested state when no start triggers were specified in
the ECSpec. These correspond to the possible ways of
specifying the start of an event cycle as defined in
Section 8.2.1.

initiationTrigger If initiationCondition is TRIGGER, the
ECTrigger instance corresponding to the trigger that
initiated the event cycle; omitted otherwise.

terminationCondition Indicates what kind of event caused the event cycle to
terminate: the receipt of an explicit stop trigger, the
expiration of the event cycle duration, the read field
being stable for the prescribed amount of time, or the
“when data available” condition becoming true. These
correspond to the possible ways of specifying the end of
an event cycle as defined in Section 8.2.1.

terminationTrigger If terminationCondition is TRIGGER, the
ECTrigger instance corresponding to the trigger that
terminated the event cycle; omitted otherwise.

ECSpec A copy of the ECSpec that generated this ECReports
instance. Only included if the ECSpec has
includeSpecInReports set to true.

Table 44. ECReports Fields 2716

2718
2719

8.3.1 ECInitiationCondition 2717
ECInitiationCondition is an enumerated type that describes how an event cycle
was started.

 Copyright © 2004–2009 EPCglobal®, All Rights Reserved.Page 110 of 229

<<Enumerated Type>> 2720
ECInitiationCondition 2721

TRIGGER 2722
REPEAT_PERIOD 2723
REQUESTED 2724
UNDEFINE 2725
<<extension point>> 2726

2727
2728
2729

The ALE implementation SHALL set the initiationCondition field of an
ECReports instance generated at the conclusion of an event according to the condition
that caused the event cycle to start, as specified in the following table.

ECInitiationCondition Event causing the event cycle to start
TRIGGER One of the triggers specified in the startTrigger or

startTriggerList parameter of ECBoundarySpec was
received.

REPEAT_PERIOD The repeatPeriod specified in the ECBoundarySpec
expired, or the event cycle started immediately after the
previous event cycle ended because neither a start trigger nor a
repeat period was specified.

REQUESTED The ECSpec transitioned from the unrequested state to the
requested state and startTriggerList in
ECBoundarySpec was empty.

UNDEFINE Used when an outstanding poll call is terminated due to an
undefine call, while the ECSpec was in the requested state
(that is, before any start condition actually occurred). See
Section 5.6.1.

Table 45. ECInitiationCondition Values 2730

2731
2732

2734
2735

Each row of this table corresponds to one of the possible start conditions specified in
Section 8.2.1.

8.3.2 ECTerminationCondition 2733
ECTerminationCondition is an enumerated type that describes how an event cycle
was ended.

 Copyright © 2004–2009 EPCglobal®, All Rights Reserved.Page 111 of 229

<<Enumerated Type>> 2736
ECTerminationCondition 2737

TRIGGER 2738
DURATION 2739
STABLE_SET 2740
DATA_AVAILABLE 2741
UNREQUEST 2742
UNDEFINE 2743
<<extension point>> 2744

2745
2746
2747

The ALE implementation SHALL set the terminationCondition field of an
ECReports instance generated at the conclusion of an event cycle according to the
condition that caused the event cycle to end, as specified in the following table.

ECTerminationCondition Event causing the event cycle to end
TRIGGER One of the triggers specified in stopTriggerList of

ECBoundarySpec was received.

DURATION The duration specified in the ECBoundarySpec
expired.

STABLE_SET No new Tags were read within the
stableSetInterval specified in the
ECBoundarySpec.

DATA_AVAILABLE The whenDataAvailable parameter of the ECSpec
was true and a Tag was read.

UNREQUEST The ECSpec transitioned to the unrequested state. By
definition, this value cannot actually appear in an
ECReports instance sent to any client.

UNDEFINE The ECSpec was removed by an undefine call while in
the requested or active state. See Section 5.6.1.

Table 46. ECTerminationCondition Values 2748

2749
2750

2752

Each row of this table corresponds to one of the possible stop conditions specified in
Section 8.2.1.

8.3.3 ECReport 2751
ECReport represents a single report within an event cycle.

 Copyright © 2004–2009 EPCglobal®, All Rights Reserved.Page 112 of 229

ECReport 2753
reportName : String 2754
groups : List<ECReportGroup> 2755
<<extension point>> 2756
--- 2757

2758 An ALE implementation SHALL construct an ECReport as follows:

Field Type Description
reportName String A copy of the reportName field from the

corresponding ECReportSpec within the
ECSpec that controlled this event cycle.

groups List<ECReport
Group>

An unordered list containing one element for each
group in the report as controlled by the group
field of the corresponding ECReportSpec.
When no grouping is specified, the groups list
just consists of the single default group.

Table 47. ECReport Fields 2759

2761
8.3.4 ECReportGroup 2760
ECReportGroup represents one group within an ECReport.

ECReportGroup 2762
groupName : String 2763
groupList : ECReportGroupList 2764
groupCount : ECReportGroupCount 2765
<<extension point>> 2766

--- 2767

2768 An ALE implementation SHALL construct an ECReportGroup as follows:

Field Type Description
groupName String Null for the default group. For any other

group, the group name as determined
according to Section 8.2.9.

 Copyright © 2004–2009 EPCglobal®, All Rights Reserved.Page 113 of 229

Field Type Description
groupList ECReportGroupList Null if the includeEPC, includeTag,

includeRawHex, and
includeRawDecimal fields of the
corresponding ECReportOutputSpec
are all false and the fieldList in the
corresponding ECReportOutputSpec
is empty (unless
ECReportOutputSpec has vendor
extensions that cause groupList to be
included). Otherwise, an
ECReportGroupList instance
containing data read from the Tags in this
group.

groupCount ECReportGroupCount Null if the includeCount field of the
corresponding ECReportOutputSpec
is false (unless ECReportOutputSpec
has vendor extensions that cause
groupCount to be included).
Otherwise, the number of Tags in this
group.

Table 48. ECReportGroup Fields 2769

2771
2772
2773

8.3.5 ECReportGroupList 2770
An ECReportGroupList SHALL be included in an ECReportGroup when any of
the four boolean fields includeEPC, includeTag, includeRawHex, and
includeRawDecimal of the corresponding ECReportOutputSpec are true.

ECReportGroupList 2774
members : List<ECReportGroupListMember> 2775
<<extension point>> 2776
--- 2777

2778 An ALE implementation SHALL construct an ECReportGroupList as follows:

Field Type Description
members List<ECReport

GroupListMember>
An unordered, possibly empty list of
ECReportGroupListMember instances,
one for each distinct Tag that belongs to this
group. See the note below.

Table 49. ECReportGroupList Fields 2779

 Copyright © 2004–2009 EPCglobal®, All Rights Reserved.Page 114 of 229

Each distinct Tag included in this group SHALL have a distinct
ECReportGroupListMember element in the ECReportGroupList, even if those
ECReportGroupListMember elements would be identical due to the fields and
formats selected. For example, it is possible for two different tags to have the same pure
identity EPC representation; e.g., two Tags having SGTIN-96 EPC values that differ only
in the filter bits. If both tags are read in the same event cycle, and
ECReportOutputSpec specified includeEPC true and all other formats false, then
the resulting ECReportGroupList SHALL have two
ECReportGroupListMember elements, each having the same pure identity URI in
the epc field. Similarly, if two Tags have the same values in one or more user defined
fields, and ECReportOutputSpec only specified reading from those fields, the
resulting ECReportGroupList SHALL have two ECReportGroupListMember
elements, each having the same user fields in the fieldList parameter.

2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792

2794
2795

8.3.6 ECReportGroupListMember 2793
Each member of the ECReportGroupList is an ECReportGroupListMember as
defined below.

ECReportGroupListMember 2796
epc : URI 2797
tag : URI 2798
rawHex : URI 2799
rawDecimal : URI 2800
fieldList : List<ECReportMemberField> 2801
stats : List<ECTagStat> 2802
<<extension point>> 2803
--- 2804

2805
2806

An ALE implementation SHALL construct an ECReportGroupListMember from
information read from a single Tag, as follows:

Field Type Description
epc URI Null, if the includeEPC field of the

corresponding ECReportOutputSpec instance
is false, or if accessing the epc field of the Tag
results in a “field not found” or “operation not
possible” condition. Otherwise, the value of the
epc field of the Tag, in the epc-pure format as
specified in Section 6.2.1.1.

 Copyright © 2004–2009 EPCglobal®, All Rights Reserved.Page 115 of 229

Field Type Description
tag URI Null, if the includeTag field of the

corresponding ECReportOutputSpec instance
is false, or if accessing the epc field of the Tag
results in a “field not found” or “operation not
possible” condition. Otherwise, the value of the
epc field of the Tag, in the epc-tag format as
specified in Section 6.2.1.1.

rawHex URI Null, if the includeRawHex field of the
corresponding ECReportOutputSpec instance
is false, or if accessing the epc field of the Tag
results in a “field not found” or “operation not
possible” condition. Otherwise, the value of the
epc field of the Tag, in the epc-hex format as
specified in Section 6.2.1.1.

rawDecimal URI Null, if the includeRawDecimal field of the
corresponding ECReportOutputSpec instance
is false, or if accessing the epc field of the Tag
results in a “field not found” or “operation not
possible” condition. Otherwise, the value of the
epc field of the Tag, in the epc-decimal
format as specified in Section 6.2.1.1.

fieldList List<ECReport
MemberField>

Null, if the fieldList parameter of the
corresponding ECReportOutputSpec is
empty, omitted, or null. Otherwise, contains zero
or more ECReportMemberField instances for
each fieldspec listed in the fieldList
parameter of the corresponding
ECReportOutputSpec, in the corresponding
order. If a fieldspec specified a pattern
fieldname, then zero or more
ECReportMemberField instances may be
present. Otherwise, exactly one
ECReportMemberField instance is present.

stats List<
ECTagStat>

Null, if the statProfileNames parameter of
the corresponding ECReportSpec is empty,
omitted, or null. Otherwise, contains an
ECTagStat for each statistics profile named in
the statProfileNames parameter of the
corresponding ECReportSpec, in the
corresponding order.

 Copyright © 2004–2009 EPCglobal®, All Rights Reserved.Page 116 of 229

Table 50. ECReportGroupListMember Fields 2807

2809
2810
2811

8.3.7 ECReportMemberField 2808
Each ECReportMemberField within the fieldList of an
ECReportGroupListMember gives the value read from a single field of a single
Tag.

ECReportMemberField 2812
name : String 2813
value : String // optional 2814
fieldspec : ECFieldSpec // optional 2815
<<extension point>> 2816
--- 2817

2818 An ALE implementation SHALL construct an ECReportMemberField as follows:

Field Type Description
name String The name specified in the corresponding

ECReportOutputFieldSpec that
generated this
ECReportMemberField instance in
this report, either explicitly or defaulted to
the fieldname as specified in
Section 8.2.11. If the name is defaulted to
the fieldname, and the fieldname specified
in the ECReportOutputFieldSpec
was a pattern fieldname, then the value of
the “name” parameter SHALL be the
name of the specific field that matched the
pattern.

value String (Optional) The value read from the field
of the Tag. This value SHALL conform
to the syntax implied by the format
parameter of fieldspec.

If the attempt to read the field value of the
Tag caused a “field not found” or
“operation not possible” condition, the
value parameter SHALL be omitted.

 Copyright © 2004–2009 EPCglobal®, All Rights Reserved.Page 117 of 229

Field Type Description
fieldspec ECFieldSpec (Optional) If the

includeFieldSpecInReport
parameter of the corresponding
ECReportOutputFieldSpec that
generated this
ECReportMemberField instance in
this report was set to true, this fieldspec
parameter SHALL contain a copy of the
corresponding ECFieldSpec instance in
the ECReportOutputFieldSpec. If
the datatype or format parameters
were omitted in the original
ECFieldSpec, in this copy those fields
SHALL contain the default datatype or
format that were used.

Omitted if the
includeFieldSpecInReport
parameter of the corresponding
ECReportOutputFieldSpec that
generated this
ECReportMemberField instance in
this report was omitted or set to false.

Table 51. ECReportMemberField Fields 2819

2821
2822

8.3.8 ECReportGroupCount 2820
An ECReportGroupCount is included in an ECReportGroup when the
includeCount field of the corresponding ECReportOutputSpec is true.

ECReportGroupCount 2823
count : Integer 2824
<<extension point>> 2825

--- 2826

2827 An ALE implementation SHALL construct an ECReportGroupCount as follows:

Field Type Description
count Integer The number of distinct Tags that are part of this group.

Table 52. ECReportGroupCount Fields 2828

 Copyright © 2004–2009 EPCglobal®, All Rights Reserved.Page 118 of 229

8.3.9 ECTagStat 2829
An ECTagStat provides additional, implementation-defined information about each
“sighting” of a Tag, that is, each time a Tag is acquired by one of the Readers
participating in the event cycle.

2830
2831
2832

ECTagStat 2833
profile : ECStatProfileName 2834
statBlocks : List<ECReaderStat> 2835
--- 2836

2837 An ALE implementation SHALL construct an ECTagStat as follows:

Field Type Description
profile ECStatProfileName The name of the statistics profile that

governed the generation of this
ECTagStat instance.

statBlocks List<ECReaderStat> An unordered list containing an
ECReaderStat instance for each Reader
that sighted this Tag.

Table 53. ECTagStat Fields 2838

2840
2841
2842
2843
2844
2845

8.3.10 ECReaderStat 2839
An ECReaderStat contains information about sightings of a Tag by a particular
Reader. An ALE implementation MAY use a subclass of this type to provide
information about a Reader’s interaction with a Tag that is not specific to a particular
sighting. For example, a subclass of this type might provide timestamps for the first and
last time the Tag was sighted by the Reader, or the total number of sightings of the Tag
by that Reader.

ECReaderStat 2846
readerName : String 2847
sightings : List<ECSightingStat> 2848
--- 2849

2850 An ALE implementation SHALL construct an ECReaderStat as follows:

 Copyright © 2004–2009 EPCglobal®, All Rights Reserved.Page 119 of 229

Field Type Description
readerName String The name of the logical Reader whose

sightings are reported in this
ECReaderStat. This name may, at
the implementer’s discretion, refer to
either a logical reader name as named in
the defining ECSpec or one of the
underlying component readers that
contribute to a named logical reader.
Implementers SHOULD document for
each statistics profile which of the
names are used (or both).

sightings List<ECSightingStat> (Optional) An unordered list containing
information pertaining to one sighting
of the Tag by the Reader named in
readerName.

Table 54. ECReaderStat Fields 2851

2852
2853
2854

2856
2857
2858
2859
2860

2861
2862
2863

2865
2866
2867
2868
2869
2870

Note that ECReaderStat is used both by the Reading API and the Writing API.
Unless otherwise noted, the interpretation of an ECReaderStat instance is the same in
both APIs.

8.3.11 ECSightingStat 2855
An ECSightingStat contains information about a single sighting of a Tag by a
particular Reader. An ALE implementation MAY use a subclass of this type to provide
information about a single sighting of a Tag. For example, a subclass of this type might
provide the timestamp for this sighting, the received signal strength (for an RFID Tag),
etc.

Note that ECSightingStat is used both by the Reading API and the Writing API.
Unless otherwise noted, the interpretation of an ECSightingStat instance is the same
in both APIs.

8.3.12 ECTagTimestampStat 2864
ECTagTimestampStat is a subclass of ECTagStat. An ALE implementation
SHALL include one ECTagTimestampStat in an ECReportGroupListMember
if the TagTimestamps statistics profile was included in the corresponding
ECReportSpec and the implementation chooses to implement the TagTimestamps
statistics profile. ECTagTimestampStat includes all of the fields in ECTagStat,
plus the following additional fields:

 Copyright © 2004–2009 EPCglobal®, All Rights Reserved.Page 120 of 229

ECTagTimestampStat 2871
firstSightingTime: dateTime 2872
lastSightingTime: dateTime 2873
--- 2874

2875 An ALE implementation SHALL construct an ECTagTimestampStat as follows:

Field Type Description
profile ECStatProfileName This field SHALL contain the

TagTimestamps value of
ECStatProfileName.

statBlocks List<ECReaderStat> This field SHALL contain an empty list
(i.e. a list that contains 0 items).

firstSight
ingTime

dateTime If the ECReportSetSpec for this report
is DELETIONS then this field MAY be
present. If present, it SHALL contain the
first time that the tag was seen during the
previous event cycle.

If the ECReportSetSpec for this report
is CURRENT or ADDITIONS then this
field SHALL contain the first time within
this event cycle that the tag was seen by
any reader contributing to this event cycle.

lastSighti
ngTime

dateTime If the ECReportSetSpec for this report
is DELETIONS then this field MAY be
present. If present, it SHALL contain the
last time that the tag was seen during the
previous event cycle.

If the ECReportSetSpec for this report
is CURRENT or ADDITIONS then this
field SHALL contain the last time within
this event cycle that the tag was seen by
any reader contributing to this event cycle.

Table 55. ECTagTimestampStat Fields 2876

2877
2878
2879
2880
2881

Implementations MAY choose to use any clock that they wish to measure
firstSightingTime and lastSightingTime, but they SHALL correct for any
differences in clocks such that those time stamps are brought into synchronization with
the date field of ECReports. For bindings in which time is represented textually, an
ISO-8601 compliant representation SHOULD be used.

 Copyright © 2004–2009 EPCglobal®, All Rights Reserved.Page 121 of 229

8.4 ALECallback Interface 2882
The ALECallback interface is the path by which an ALE implementation delivers
asynchronous results from event cycles to subscribers.

2883
2884

<<interface>> 2885
ALECallback 2886

--- 2887
callbackResults(reports : ECReports) : void 2888

2889
2890
2891
2892
2893
2894
2895

Referring to the state transition tables in Section 5.6.1, whenever a transition specifies
that “reports are delivered to subscribers” the ALE implementation SHALL attempt to
deliver the results to each subscriber by invoking the callbackResults method of
the ALECallback interface once for each subscriber, passing the ECReports for the
event cycle as specified above, and using the binding and addressing information
specified by the notification URI for that subscriber as specified in the subscribe call.
All subscribers receive an identical ECReports instance.

Explanation (non-normative): The ALECallback interface is defined very simply, to 2896
allow for a wide variety of possible implementations. A binding of the ALECallback 2897
interface may not be a request-response style RPC mechanism at all, but may instead just 2898
be a one-way message transport, where the message payload is the ECReports 2899
instance. Indeed, this is true of all of the standardized bindings of this interface 2900
described in Part II [ALE1.1Part2]. 2901

2903
2904
2905
2906

2907
2908
2909
2910
2911

2912
2913
2914
2915
2916
2917
2918
2919
2920

9 ALE Writing API 2902
This section defines normatively the ALE Writing API. The external interface is defined
by the ALECC interface (Sections 9.1, 9.5, 9.6, and 9.7). This interface makes use of a
number of complex data types that are documented in the sections following Section 9.1.
The specification of the Writing API follows the general rules given in Section 4.

Through the ALECC interface defined in Section 9.1, clients may define and manage
command cycle specifications (CCSpecs), operate upon Tags on-demand by activating
CCSpecs synchronously, and enter standing requests (subscriptions) for CCSpecs to be
activated asynchronously. Results from standing requests are delivered through the
ALECCCallback interface, specified in Section 9.8.

Implementations MAY expose the ALECC interface of the ALE Writing API interface via
a wire protocol, or via a direct API in which clients call directly into code that
implements the API. Likewise, implementations MAY implement the
ALECCCallback interface via a wire protocol or via a direct API in which clients
receive asynchronous results through a direct callback. This Part I of the ALE 1.1
specification does not define the concrete wire protocol or programming language-
specific API, but instead only provides an abstract specification of the interfaces using
UML. Part II of the specification [ALE1.1Part2] specifies XML-based wire protocol
bindings of the interfaces, including an XSD schema for the API data types, a WS-I

 Copyright © 2004–2009 EPCglobal®, All Rights Reserved.Page 122 of 229

compliant WSDL definition of a SOAP binding of the ALECC interface, and several
XML-based bindings of the ALECCCallback interface. Implementations MAY
provide additional bindings of the API, including bindings to particular programming
languages.

2921
2922
2923
2924

9.1 ALECC Class 2925
<<interface>> 2926

ALECC 2927
--- 2928
define(specName : String, spec : CCSpec) : void 2929
undefine(specName : String) : void 2930
getCCSpec(specName : String) : CCSpec 2931
getCCSpecNames() : List<String> // returns a list of 2932
specNames as strings 2933
subscribe(specName : String, notificationURI : String) : 2934
void 2935
unsubscribe(specName : String, notificationURI : String) : 2936
void 2937
poll(specName : String, params : CCParameterList) : 2938
CCReports 2939
immediate(spec : CCSpec) : CCReports 2940
getSubscribers(specName : String) : List<String> // of 2941
notification URIs 2942
getStandardVersion() : String 2943
getVendorVersion() : String 2944
<<extension point>> 2945

2946
2947

An ALE implementation SHALL implement the above methods of the ALE Writing API
as specified in the following table:

Method Argument/
Result

Type Description

define specName String Creates a new CCSpec having
the name specName, according
to spec. The lifecycle of the
new CCSpec SHALL be subject
to the provisions of
Section 5.6.1.

spec CCSpec

[result] Void

undefine specName String Removes the CCSpec named

 Copyright © 2004–2009 EPCglobal®, All Rights Reserved.Page 123 of 229

Method Argument/
Result

Type Description

[result] Void specName that was previously
created by the define method.
The effect SHALL be as
specified in Section 5.6.1.

getCCSpec specName String Returns the CCSpec that was
provided when the CCSpec
named specName was created
by the define method. The
result SHALL be equivalent to
the CCSpec that was provided to
the define method, but NEED
NOT be identical. “Equivalent”
means that the returned CCSpec
has exactly the same meaning as
the original CCSpec when
interpreted according to this
specification.

[result] CCSpec

getCCSpecNames [result] List<
String>

Returns an unordered list of the
names of all CCSpecs that are
visible to the caller. The order
of this list is implementation-
dependent.

subscribe specName String Adds a subscriber having the
specified notificationURI
to the set of current subscribers
of the CCSpec named
specName. The effect SHALL
be as specified in Section 5.6.1.
The notificationURI
parameter both identifies a
specific binding of the
ALECCCallback interface and
specifies addressing information
meaningful to that binding. See
Part II.

notifi-
cationURI

String

[result] void

unsubscribe specName String Removes a subscriber having the
specified notificationURI
from the set of current

notify-
cationURI

String

 Copyright © 2004–2009 EPCglobal®, All Rights Reserved.Page 124 of 229

Method Argument/
Result

Type Description

[result] void subscribers of the CCSpec
named specName. The effect
SHALL be as specified in
Section 5.6.1.

poll specName String Requests an activation of the
CCSpec named specName,
returning the results from the
next event cycle to complete, as
specified in Section 5.6.1.
Within this activation, params
provides the values for
parameters referred to in
CCOpSpec instances. See also
the text at the end of
Section 5.6.1.

The ALE implementation MAY
provide a means to abort an
outstanding poll call, by
explicit client action, by timeout,
or by some other means. If such
a means is provided, the effect
on the CCSpec lifecycle of
aborting the poll call SHALL
be as specified in Section 5.6.1.

params CCPara-
meterList

[result] CCReports

immediate spec CCSpec Creates an unnamed CCSpec
according to spec, and
immediately requests its
activation. The behavior
SHALL be, as specified in
Section 5.6.2.

The ALE implementation MAY
provide a means to abort an
outstanding immediate call,
by explicit client action, by
timeout, or by some other
means. If such a means is
provided, the effect on the
CCSpec lifecycle of aborting the
immediate call SHALL be as
specified in Section 5.6.2.

[result] CCReports

 Copyright © 2004–2009 EPCglobal®, All Rights Reserved.Page 125 of 229

Method Argument/
Result

Type Description

getSubscribers specName String Returns an unordered, possibly
empty list of the notification
URIs corresponding to each of
the current subscribers for the
CCSpec named specName.

[result] List<
String>

getStandardVersion [result] String Returns a string that identifies
what version of the specification
this implementation of the ALE
Writing API complies with as
specified in Section 4.3.

getVendorVersion [result] String Returns a string that identifies
what vendor extensions of the
ALE Writing API this
implementation provides as
specified in Section 4.3.

Table 56. ALECC Interface Methods 2948

2949
2950
2951
2952
2953
2954
2955

2957
2958
2959
2960

The primary data types associated with the ALE Writing API are the CCSpec, which
specifies how a command cycle is to be carried out, and the CCReports, which
contains one or more reports generated from one activation of a CCSpec. CCReports
instances are both returned from the poll and immediate methods, and also sent to
subscribers when CCSpecs are subscribed to using the subscribe method. The next
two sections, Section 9.3 and Section 9.4, specify the CCSpec and CCReports data
types in full detail.

9.1.1 Error Conditions 2956
Methods of the ALE Writing API signal error conditions to the client by means of
exceptions. The following exceptions are defined. All the exception types in the
following table are extensions of a common ALEException base type, which contains
one string element giving the reason for the exception.

 Copyright © 2004–2009 EPCglobal®, All Rights Reserved.Page 126 of 229

Exception Name Meaning
SecurityException The operation was not permitted due to an

access control violation or other security
concern. If the Writing API
implementation is associated with an
implementation of the Access Control API
(Section 11), the Writing API
implementation SHALL raise this
exception if the client was not granted
access rights to the called method as
specified in Section 11. Other,
implementation-specific circumstances
may cause this exception; these are
outside the scope of this specification.

DuplicateNameException The specified CCSpec name already
exists. Note that the existence of an
ECSpec having the same name does not
cause this exception; ECSpecs and
CCSpecs are in different namespaces.

CCSpecValidationException The specified CCSpec is invalid. The
complete list of rules for generating this
exception is specified in Section 9.3.10.

InvalidURIException The URI specified for a subscriber does
not conform to URI syntax as specified in
[RFC2396], does not name a binding of
the ALECCCallback interface
recognized by the implementation, or
violates syntax or other rules imposed by
a particular binding.

NoSuchNameException The specified CCSpec name does not
exist.

NoSuchSubscriberException The specified subscriber does not exist.
DuplicateSubscriptionException The specified CCSpec name and

subscriber URI is identical to a previous
subscription that was created and not yet
unsubscribed.

 Copyright © 2004–2009 EPCglobal®, All Rights Reserved.Page 127 of 229

Exception Name Meaning
ParameterException The specified params parameter of the

poll method was invalid for any of the
following reasons:

• Two or more
CCParameterListEntry
instances have the same name.

• A CCSpec refers to a parameter, but
the params parameter to poll lacks
an entry for that parameter name.

• The value of a
CCParameterListEntry is not
valid syntax for the datatype and
format implied by the fieldspec of
a CCOpDataSpec that refers to that
parameter.

ParameterForbiddenException The CCSpec referred to by a
subscribe or immediate operation
includes a CCOpDataSpec of type
PARAM.

ImplementationException A generic exception raised by the
implementation for reasons that are
implementation-specific. This exception
contains one additional element: a
severity member whose values are
either ERROR or SEVERE. ERROR
indicates that the ALE implementation is
left in the same state it had before the
operation was attempted. SEVERE
indicates that the ALE implementation is
left in an indeterminate state.

Table 57. Exceptions in the ALECC Interface 2961
2962
2963
2964
2965
2966

The exceptions that may be raised by each ALE method are indicated in the table below.
An ALE implementation SHALL raise the appropriate exception listed below when the
corresponding condition described above occurs. If more than one exception condition
applies to a given method call, the ALE implementation may raise any of the exceptions
that applies.

 Copyright © 2004–2009 EPCglobal®, All Rights Reserved.Page 128 of 229

ALE Method Exceptions
define DuplicateNameException

CCSpecValidationException
SecurityException
ImplementationException

undefine NoSuchNameException
SecurityException
ImplementationException

getCCSpec NoSuchNameException
SecurityException
ImplementationException

getCCSpecNames SecurityException
ImplementationException

subscribe NoSuchNameException
InvalidURIException
DuplicateSubscriptionException
ParameterForbiddenException
SecurityException
ImplementationException

unsubscribe NoSuchNameException
NoSuchSubscriberException
InvalidURIException
SecurityException
ImplementationException

poll NoSuchNameException
ParameterException
SecurityException
ImplementationException

immediate CCSpecValidationException
ParameterForbiddenException
SecurityException
ImplementationException

getSubscribers NoSuchNameException
SecurityException
ImplementationException

getStandardVersion ImplementationException

getVendorVersion ImplementationException

Table 58. Exceptions Raised for each ALECC Interface Method 2967

 Copyright © 2004–2009 EPCglobal®, All Rights Reserved.Page 129 of 229

9.2 CCParameterList 2968
A CCParameterList is an unordered list of name/value pairs, each specifying a parameter
name and a corresponding parameter value. Parameter values are string data that provide
specific values to be used in tag commands. See Sections

2969
2970
2971 9.3.4 and 9.3.5.

CCParameterList 2972
entries : List<CCParameterListEntry> 2973
--- 2974

2976
9.2.1 CCParameterListEntry 2975
A CCParameterListEntry is a single name/value pair.

CCParameterListEntry 2977
name : String 2978
value : String 2979
--- 2980

2982
2983

2984
2985
2986
2987
2988
2989

9.3 CCSpec 2981
A CCSpec is a complex type that describes a command cycle. A command cycle is an
interval of time during which Tags are operated upon.

A CCSpec contains (a) one or more logical reader names; (b) a boundary specification
(CCBoundarySpec) that identifies an interval of time; (c) one or more command
specifications (CCCmdSpec) that specify operations to be performed on a population of
Tags visible to the specified logical readers during the specified interval of time. The
command specifications also imply what information is included in a report generated
from each command cycle generated from this CCSpec.

CCSpec 2990
logicalReaders : List<String> // List of logical reader 2991
names 2992
boundarySpec : CCBoundarySpec 2993
cmdSpecs : List<CCCmdSpec> 2994
includeSpecInReports : Boolean 2995
<<extension point>> 2996

--- 2997

2998 The ALE implementation SHALL interpret the fields of a CCSpec as follows.

 Copyright © 2004–2009 EPCglobal®, All Rights Reserved.Page 130 of 229

Field Type Description
logicalReaders List<String> An unordered list that specifies

one or more logical readers that
are used to reach tags.

boundarySpec CCBoundarySpec Specifies the starting and
stopping conditions for
command cycles. See
Section 9.3.1.

cmdSpecs List<CCCmdSpec> An ordered list that specifies
one or more sequences of
commands to apply to Tags.
See Section 9.3.2.

includeSpecInReports Boolean If true, specifies that each
CCReports instance generated
from this CCSpec SHALL
include a copy of the CCSpec.
If false, each CCReports
instance SHALL NOT include a
copy of the CCSpec.

Table 59. CCSpec Fields 2999

3000
3001
3002

3004

3006

3008
3009

3011
3012

The define and immediate methods SHALL raise a
CCSpecValidationException if any of the following are true for a CCSpec
instance:

• The logicalReaders parameter is null, omitted, is an empty list, or contains any 3003
logical reader names that are not known to the implementation.

• The boundarySpec parameter is null or omitted, or the specified boundarySpec 3005
leads to a CCSpecValidationException as specified in Section 9.3.1.

• The cmdSpecs parameter is null, omitted, empty, or any of the members of 3007
cmdSpecs leads to a CCSpecValidationException as specified in
Section 9.3.2.

9.3.1 CCBoundarySpec 3010
A CCBoundarySpec specifies how the beginning and end of command cycles are to be
determined.

 Copyright © 2004–2009 EPCglobal®, All Rights Reserved.Page 131 of 229

CCBoundarySpec 3013
startTriggerList : List<ECTrigger> 3014
repeatPeriod : ECTime 3015
stopTriggerList : List<ECTrigger> 3016
duration : ECTime 3017
noNewTagsInterval : ECTime 3018
tagsProcessedCount : Integer 3019
afterError : Boolean 3020
<<extension point>> 3021
--- 3022

3023
3024

The ALE implementation SHALL interpret the fields of a CCBoundarySpec as
follows.

Field Type Description
startTriggerList List<ECTrigger> (Optional) An unordered list that

specifies zero or more triggers that
may start a new command cycle
for this CCSpec.

repeatPeriod ECTime (Optional) Specifies an interval of
time for starting a new command
cycle for this CCSpec, relative to
the start of the previous command
cycle.

stopTriggerList List<ECTrigger> (Optional) An unordered list that
specifies zero or more triggers that
may stop a command cycle for this
CCSpec.

duration ECTime (Optional) Specifies an interval of
time for stopping a command cycle
for this CCSpec, relative to the
start of the command cycle.

If omitted or equal to zero, has no
effect on the stopping of the
command cycle.

 Copyright © 2004–2009 EPCglobal®, All Rights Reserved.Page 132 of 229

Field Type Description
noNewTagsInterval ECTime (Optional) Specifies that a

command cycle may be stopped if
no new tags are encountered
within the specified interval.

If omitted or equal to zero, has no
effect on the stopping of the
command cycle.

tagsProcessedCount Integer (Optional) Specifies that a
command cycle may be stopped
after the specified number of Tags
have been processed.

If omitted or equal to zero, has no
effect on the stopping of the
command cycle.

afterError Boolean (Optional) If true, specifies that a
command cycle may be stopped
when an error is encountered
during Tag processing.

If omitted or false, has no effect on
the stopping of the event cycle.

Table 60. CCBoundarySpec Fields 3025

3026
3027
3028

3030

3032
3033
3034

3037
3038
3039

3040
3041
3042

The define and immediate methods SHALL raise a
CCSpecValidationException if any of the following are true for a
CCBoundarySpec instance:

• A negative number is specified for any of the ECTime values duration, 3029
repeatPeriod, or noNewTagsInterval.

• Any element of startTriggerList or stopTriggerList does not conform 3031
to URI syntax as defined by [RFC2396], or is a URI that is not supported by the ALE
implementation. Note that an empty string does not conform to URI syntax as defined
by [RFC2396].

• A negative number is specified for tagsProcessedCount. 3035

• No stopping condition apart from afterError is specified; i.e., 3036
stopTriggerList is empty, duration is zero or omitted,
noNewTagsInterval is zero or omitted, tagsProcsssedCount is zero or
omitted, and no vendor extension stopping condition is specified.

In the description below, the phrase “if specified” used in reference to repeatPeriod,
duration, noNewTagsInterval, or tagsProcessedCount means that the
parameter is specified and is a positive (non-zero) number.

 Copyright © 2004–2009 EPCglobal®, All Rights Reserved.Page 133 of 229

The boundarySpec parameter of CCSpec (of type CCBoundarySpec) specifies
starting and stopping conditions as referred to in the CCSpec lifecycle specified in
Sections

3043
3044
3045
3046
3047
3048
3049

3051

3053
3054

3057
3058
3059
3060
3061

3063
3064
3065
3066

3068
3069
3070
3071
3072
3073

5.6.1 and 5.6.2. Within that description, “arrival of a start trigger” means that
the ALE implementation receives any of the triggers specified in
startTriggerList, and “repeat period” means the value of the repeatPeriod
parameter, if specified. The phrase “a stopping condition has occurred” means the first of
the following to occur:

• The duration, when specified, expires (measured from the start of the command 3050
cycle).

• When the noNewTagsInterval is specified, no new Tags are encountered by any 3052
Reader for the specified interval. In this context, “new” is to be interpreted
collectively among Readers contributing to this command cycle.

• Any one of the stop triggers specified in stopTriggerList is received. 3055

• The tagsProcessedCount parameter is specified, and that many Tags have been 3056
processed. If several matching Tags are processed in a single reader cycle, the
implementation MAY terminate the command cycle after processing all of those Tags
(that is, the implementation does not have to count Tags at any finer granularity than
a reader cycle). Note that the only tags that count towards tagsProcessedCount
are those that match the filtering conditions of at least one CCCmdSpec.

• The afterError parameter is true, and processing of a CCOpSpec for a Tag has 3062
resulted in an error. If several Tags are processed in a single reader cycle and only
one results in an error, the implementation MAY terminate the command cycle after
processing all of those Tags (that is, the implementation does not have to detect errors
at any finer granularity than a reader cycle).

9.3.2 CCCmdSpec 3067
A CCCmdSpec includes (a) a filter specification (CCFilterSpec) that has
inclusive/exclusive filters to select a population of tags; (b) an ordered list of one or more
operation specifications (CCOpSpec), each of which describes a single operation to be
performed on a tag. During a command cycle, the ALE implementation attempts to carry
out the commands specified by the operation specifications on each of the tags selected
by the filter specification.

 Copyright © 2004–2009 EPCglobal®, All Rights Reserved.Page 134 of 229

CCCmdSpec 3074
name : String 3075
filterSpec : CCFilterSpec 3076
opSpecs : List<CCOpSpec> 3077
reportIfEmpty : Boolean 3078
statProfileNames : List<CCStatProfileName> 3079
<<extension point>> 3080
--- 3081

3082 The ALE implementation SHALL interpret the fields of an CCCmdSpec as follows.

Field Type Description
name String Specifies a name for this

CCCmdSpec. The ALE
implementation SHALL copy this
name into the CCReport instance
generated from this CCCmdSpec.

filterSpec CCFilterSpec Specifies which Tags are to be
processed according to this
CCCmdSpec.

opSpecs List<CCOpSpec> An ordered list of CCOpSpec
instances, each specifying an
operation to be carried out on a Tag.
The ALE implementation SHALL
process each Tag that matches
filterSpec acquired during a
command cycle in a manner
equivalent to carrying out the
operations specified in opSpecs in
the order specified. The ALE
implementation MAY actually carry
out operations in any order it wishes,
so long as the net effect is identical
to carrying them out in the order
specified. For example, if two
operations specify overlapping
writes to user memory, the
implementation may merge these
into one interaction with a reader if
the net result is the same.

 Copyright © 2004–2009 EPCglobal®, All Rights Reserved.Page 135 of 229

Field Type Description
reportIfEmpty Boolean Specifies whether to omit the

CCReport instance if the set of
Tags matching the filterSpec
parameter is empty.

statProfileNames List<CCStat
ProfileName>

An ordered list that specifies zero or
more statistics profiles that govern
what statistics are to be included in
the report, as specified in
Section 9.3.9.

Table 61. CCCmdSpec Fields 3083

3084
3085
3086

3088

3090

3092

3094

3096
3097
3098

3100
3101
3102

3103
3104
3105
3106
3107
3108
3109
3110

The define and immediate methods SHALL raise a
CCSpecValidationException if any of the following are true for a CCCmdSpec
instance:

• The specified name is an empty string or is not accepted by the implementation 3087
according to Section 4.5.

• The specified name is a duplicate of another CCCmdSpec name in the same 3089
CCSpec.

• The specified filterSpec leads to a CCSpecValidationException as 3091
specified in Section 9.3.3.

• The specified opSpecs leads to a CCSpecValidationException as specified 3093
in Section 9.3.4.

• Any element of statProfileNames is not the name of a known statistics profile. 3095

A CCReports instance SHALL include an CCReport instance corresponding to each
CCCmdSpec in the governing CCSpec, in the same order specified in the CCSpec,
except that a CCReport instance SHALL be omitted under the following circumstance:

• If a CCReportSpec has reportIfEmpty set to false, then the corresponding 3099
CCReport instance SHALL be omitted from the CCReports for this command
cycle if the final, filtered set of Tags is empty (i.e., if there are no Tags to operate
upon).

When the processing of reportIfEmpty results in all CCReport instances being
omitted from a CCReports for a command cycle, then the delivery of results to
subscribers SHALL be suppressed altogether. That is, a result consisting of a
CCReports having zero contained CCReport instances SHALL NOT be sent to a
subscriber. (Because a CCSpec must contain at least one CCCmdSpec, this can only
arise as a result of reportIfEmpty processing.) This rule only applies to subscribers
(command cycle requestors that were registered by use of the subscribe method); a
CCReports instance SHALL always be returned to the caller of immediate or poll

 Copyright © 2004–2009 EPCglobal®, All Rights Reserved.Page 136 of 229

at the end of a command cycle, even if that CCReports instance contains zero
CCReport instances.

3111
3112

Explanation (non-normative): The name parameter is an arbitrary string that is copied 3113
to the CCReport instance created when this command cycle completes. The purpose of 3114
the name parameter is so that clients can distinguish which of the CCReport instances 3115
that it receives corresponds to which CCCmdSpec instance contained in the original 3116
CCSpec. This is especially useful in cases where fewer reports are delivered than there 3117
were CCCmdSpec instances in the CCSpec, because a reportIfEmpty=false 3118
setting suppressed the generation of some reports. 3119

3121
9.3.3 CCFilterSpec 3120
A CCFilterSpec specifies what Tags are to be processed by a CCCmdSpec.

CCFilterSpec 3122
filterList : List<ECFilterListMember> 3123
<<extension point>> 3124
--- 3125

3126 The ALE implementation SHALL interpret the fields of a CCFilterSpec as follows.

Field Type Description
filterList List<ECFilterListMember> Specifies an unordered list of

filters, as specified below.

Table 62. CCFilterSpec Fields 3127

3128
3129
3130

3132

3133
3134
3135
3136
3137
3138
3139

3140
3141
3142

The define and immediate methods SHALL raise a
CCSpecValidationException if any of the following are true for a
CCFilterSpec instance:

• Any element of filterList is leads to a CCSpecValidationException as 3131
specified in Section 8.2.8.

The CCFilterSpec implements a flexible filtering scheme based on a list of
ECFilterListMember instances (ECFilterListMember is shared with the ALE
Reading API, and is specified in Section 8.2.8). Each ECFilterListMember
instance defines a test to be applied to fields of a Tag to determine if the Tag should be
processed according to the containing CCCmdSpec. A Tag SHALL be subject to the
operations specified in the CCCmdSpec if it passes the test specified by every
ECFilterListMember in filterList, as defined in Sections 8.2.7 and 8.2.8.

If accessing a field specified by any element of filterList causes a “field not found”
or “operation not possible” condition, that Tag SHALL not be processed as part of this
CCCmdSpec.

 Copyright © 2004–2009 EPCglobal®, All Rights Reserved.Page 137 of 229

9.3.4 CCOpSpec 3143
Each CCOpSpec specifies an operation to perform on a Tag, such as reading a field,
writing a field, or other Tag operation. Each CCOpSpec has an operation type that
specifies which operation to perform. Operations that apply to a specific field of memory
include a fieldspec that indicates which field is involved. Operations that require input
data (such as writing to a field of a Tag) include a CCOpDataSpec to specify the input
data. See Section

3144
3145
3146
3147
3148
3149
3150

5.4 for an explanation of how different kinds of operations apply to
different types of fields in the Tag data model.

CCOpSpec 3151
opType : CCOpType 3152
fieldspec : ECFieldSpec 3153
dataSpec : CCOpDataSpec 3154
opName : String 3155
<<extension point>> 3156
--- 3157

3158 The ALE implementation SHALL interpret the fields of a CCOpSpec as follows.

Field Type Description
opType CCOpType Specifies the operation to be

performed.
fieldspec ECFieldSpec (Conditional) If opType

specifies an operation that
requires a fieldspec, this
parameter must be included to
specify what field is to be
operated upon and the
datatype and format to be
used.

If opType specifies an
operation that does not require
a fieldspec, this
parameter must be omitted.

 Copyright © 2004–2009 EPCglobal®, All Rights Reserved.Page 138 of 229

Field Type Description
dataSpec CCOpDataSpec (Conditional) If opType

specifies that requires input
data, this parameter must be
included to specify the input
data.

If opType specifies an
operation that does not require
input data, this parameter
must be omitted.

opName String (Optional) A name for this
operation within the
CCCmdSpec. If specified,
the value is copied into the
opName parameter of the
corresponding CCOpReport
instance. If omitted, the
opName parameter of the
corresponding CCOpReport
instance will be omitted as
well.

Table 63. CCOpSpec Fields 3159

3160
3161
3162

3164
3165

3168

3174

The define and immediate methods SHALL raise a
CCSpecValidationException if any of the following are true for a CCOpSpec
instance:

• The specified opType value is not one of the standard opType values specified in 3163
Section 9.3.5, or an implementation-specific value known to the ALE
implementation.

• The specified opType requires a fieldspec, and fieldspec is null or omitted. 3166

• The specified opType does not require a fieldspec, and fieldspec is 3167
specified.

• The specified fieldspec is invalid according to Section 8.2.12. 3169

• The specified opType requires a dataSpec, and dataSpec is null or omitted. 3170

• The specified opType does not require a dataSpec, and dataSpec is specified. 3171

• The specified dataSpec is invalid according to Section 9.3.6. 3172

• The specified dataSpec specifies a value that is invalid for the specified operation, 3173
as specified in Section 9.3.6.

 Copyright © 2004–2009 EPCglobal®, All Rights Reserved.Page 139 of 229

• When opName is specified, the specified opName is the same as an opName of 3175
another CCOpSpec within the same CCCmdSpec instance. 3176

3178
3179

9.3.5 CCOpType 3177
CCOpType is an enumerated type denoting what type of operation is represented by the
CCOpSpec.

<<Enumerated Type>> 3180
CCOpType 3181

READ 3182
CHECK 3183
INITIALIZE 3184
ADD 3185
WRITE 3186
DELETE 3187
PASSWORD 3188
KILL 3189
LOCK 3190
<<extension point>> 3191

3192
3193
3194

The following table describes each value of CCOpType, and the interpretation of
fieldspec and dataSpec within CCOpSpec when that CCOpType value is
specified. Unless otherwise noted, any type of dataSpec may be specified.

CCOpType
Value

Description fieldspec dataSpec

READ Read from memory The field to read [Must be omitted]
CHECK Check memory bank

contents for consistency.
The memory bank
to be checked: one
of the values
specified in
Section 9.3.5.1

A LITERAL
dataSpec whose
value specifies the
encoding of the
memory bank. See
Section 9.3.5.1

 Copyright © 2004–2009 EPCglobal®, All Rights Reserved.Page 140 of 229

CCOpType
Value

Description fieldspec dataSpec

INITIALIZE Initialize the state of a
memory so that variable
fields may be used

The memory bank
to initialize: one of
the values specified
in Section 9.3.5.2

A LITERAL
dataSpec whose
value specifies
additional
information that
guides the
initialization. See
Section 9.3.5.2

ADD Add the specified field
to the Tag’s memory,
initialized to the
specified value. For a
fixed field, this
operation is equivalent
to WRITE.

The field to add The value to write
into the specified
field

WRITE Write a new value to an
existing field.

The field to write The value to write
into the specified
field

DELETE Delete the specified
field from memory. For
a fixed field, this
operation is equivalent
to WRITE with a value
of zero.

The field to delete [Must be omitted]

PASSWORD Provide a password to
enable subsequent
commands; for Gen2
Tags, this transitions the
tag to the “secured”
state.

[Must be omitted.
The datatype for the
input is uint and
the format is hex]

The access
password

KILL Kill a tag; for Gen2
Tags this means to use
the Gen2 “kill”
command.

[Must be omitted.
The datatype for the
input is uint and
the format is hex]

The kill password

 Copyright © 2004–2009 EPCglobal®, All Rights Reserved.Page 141 of 229

CCOpType
Value

Description fieldspec dataSpec

LOCK Sets access permissions
for a memory field

The field whose
permissions are to
be set

A LITERAL
dataSpec whose
value specifies the
lock action to be
performed. See
enumeration values
for allowed lock
actions in
CCLockOperation.

Table 64. CCOpType Values 3195

3196
3197
3198

3200
3201
3202

3203
3204
3205

3208

3210

3212

3214

3216
3217
3218

9.3.5.1 Values for the CHECK Operation
An ALE implementation SHALL recognize the values defined in the following sub-
sections as valid operands for the CHECK CCOpSpecType.

9.3.5.1.1 EPC/UII Memory Bank CHECK Operation 3199
When the fieldspec is epcBank (EPC/UII memory bank), CHECK dataSpec values
of the following forms SHALL be recognized:
urn:epcglobal:ale:check:iso15962

When interacting with a Gen2 Tag, an ALE implementation SHALL check the EPC/UII
memory bank (Bank 01) of the Tag as follows. A CCOpStatus of
MEMORY_CHECK_ERROR SHALL be indicated if any of the following are true:

• The toggle bit (bit 17h) is equal to zero. 3206

• The AFI bits (bits 18h-1Fh) do not contain an ISO 15962 Application Family 3207
Identifier (AFI) that is recognized by the implementation.

• The memory bank does not contain an ISO 15962 Data Storage Format Identifier 3209
(DSFID) that is recognized by the implementation.

• The remaining contents of the memory bank are not valid according to ISO 15962 3211
[ISO15962].

• The remaining contents of the memory bank include two or more data sets having the 3213
same object identifier (OID).

9.3.5.1.2 User Memory Bank CHECK Operation 3215
When the fieldspec is userBank (EPC/UII memory bank), CHECK dataSpec values
of the following forms SHALL be recognized:
urn:epcglobal:ale:check:iso15962

 Copyright © 2004–2009 EPCglobal®, All Rights Reserved.Page 142 of 229

When interacting with a Gen2 Tag, an ALE implementation SHALL check the User
memory bank (Bank 11) of the Tag as follows. A CCOpStatus of
MEMORY_CHECK_ERROR SHALL be indicated if any of the following are true:

3219
3220
3221

3223

3225

3227

3228
3229
3230

3231
3232
3233

3235
3236
3237

3238
3239
3240

3241
3242
3243
3244
3245
3246
3247
3248
3249
3250
3251

3252
3253
3254
3255

• The memory bank does not contain an ISO 15962 Data Storage Format Identifier 3222
(DSFID) that is recognized by the implementation.

• The remaining contents of the memory bank are not valid according to ISO 15962 3224
[ISO15962].

• The remaining contents of the memory bank include two or more data sets having the 3226
same object identifier (OID).

9.3.5.2 Values for the INITIALIZE Operation
An ALE implementation SHALL recognize the values defined in the following sub-
sections as valid operands for the INITIALIZE CCOpSpecType.

An ALE implementation SHALL raise a CCSpecValidationException if the
combination of fieldspec and value for the INITIALIZE CCOpSpecType are not
recognized.

9.3.5.2.1 EPC/UII Memory Bank INITIALIZE Operation 3234
When the fieldspec is epcBank (EPC/UII memory bank), INITIALIZE dataSpec
values of the following forms SHALL be recognized:
urn:epcglobal:ale:init:iso15962:xAA[.xDD][.force]

where AA denotes two hexadecimal digits and DD denotes two or more hexadecimal
digits. When interacting with a Gen2 Tag, an ALE implementation SHALL initialize the
EPC/UII memory bank (Bank 01) of the Tag as follows:

Write a one into bit 17h, write the value AA into bits 18h-1Fh, write the value DD
beginning at bit 20h (the number of bits so written being four times the number of
characters in DD), followed by eight zero bits (note: the eight zero bits indicate that there
are no ISO data sets in the EPC/UII memory bank). Subsequent operations on the Tag
will interpret AA as the ISO 15962 Application Family Identifier (AFI), and DD as the
ISO 15962 Data Storage Format Identifier (DSFID). If xDD is omitted, the ALE
implementation SHALL supply a default value for DD. The ALE implementation MAY
examine subsequent commands in the CCCmdSpec to make an appropriate choice, based
on the particular OID or OIDs to be written to the tag, possibly combined with other ALE
settings that could for example convey the application's desire to use an external
Directory structure (or other special features that a DSFID can indicate) with the tag.

If the optional .force is not present in the dataSpec value, then the ALE
implementation SHALL omit all initialization steps as described above if the prior
contents of the bits 17h is a one, and the prior contents of bits 18h through 27h are non-
zero.

 Copyright © 2004–2009 EPCglobal®, All Rights Reserved.Page 143 of 229

Explanation (non-normative); In other words, if .force is omitted, then the tag is 3256
initialized only if it was not previously initialized to a valid ISO 15962 memory state 3257
(though not necessarily having the specified AFI and DSFID). Previously existing data 3258
sets are preserved in that case. If the tag was not previously initialized, or if .force is 3259
specified, then the memory is always initialized to a state containing no data sets. 3260

3261
3262
3263
3264

3266
3267
3268

3269
3270
3271

3272
3273
3274
3275
3276
3277
3278
3279
3280
3281

3282
3283
3284

When interacting with a Gen1 Tag, the implementation SHALL raise an “operation not
possible” condition. When interacting with any other type of Tag, the interpretation of
INITIALIZE on the EPC/UII bank is implementation dependent. An ALE
implementation SHOULD carefully document its behavior in this situation.

9.3.5.2.2 User Memory Bank INITIALIZE Operation 3265
When the fieldspec is userBank (User memory bank), INITIALIZE dataSpec values
of the following form SHALL be recognized:
urn:epcglobal:ale:init:iso15962:[xDD][.force]

where DD denotes two or more hexadecimal digits. When interacting with a Gen2 Tag,
an ALE implementation SHALL initialize the User memory bank (Bank 11) of the Tag as
follows:

Write the value DD beginning at bit 00h (the number of bits so written being four times
the number of characters in DD), followed by eight zero bits (note: the eight zero bits
indicate that there are no ISO data sets in the User memory bank). Subsequent operations
on the Tag will interpret DD as the ISO 15962 Data Storage Format Identifier (DSFID).
If xDD is omitted, the ALE implementation SHALL supply a default value for DD. The
ALE implementation MAY examine subsequent commands in the CCCmdSpec to make
an appropriate choice, based on the particular OID or OIDs to be written to the tag,
possibly combined with other ALE settings that could for example convey the
application's desire to use an external Directory structure (or other special features that a
DSFID can indicate) with the tag.

If the optional .force is not present in the dataSpec value, then the ALE
implementation SHALL omit all initialization steps as described above if the prior
contents of the bits 00h through 07h are non-zero.

Explanation (non-normative); In other words, if .force is omitted, then the tag is 3285
initialized only if it was not previously initialized to a valid ISO 15962 memory state 3286
(though not necessarily having the specified DSFID). Previously existing data sets are 3287
preserved in that case. If the tag was not previously initialized, or if .force is 3288
specified, then the memory is always initialized to a state containing no data sets. 3289

3290
3291
3292
3293

When interacting with a Gen1 Tag, the implementation SHALL raise an “operation not
possible” condition. When interacting with any other type of Tag, the interpretation of
INITIALIZE on the User memory bank is implementation dependent. An ALE
implementation SHOULD carefully document its behavior in this situation.

 Copyright © 2004–2009 EPCglobal®, All Rights Reserved.Page 144 of 229

9.3.6 CCOpDataSpec 3294
The CCOpDataSpec specifies a source of data for a command. A data specification can
specify constant data (“literal”), data from an EPC cache (only valid when writing to the
EPC bank), data from a named parameter provided as an argument to the poll API
method, data from an EPC association table, or randomly-generated data.

3295
3296
3297
3298

CCOpDataSpec 3299
specType : CCOpDataSpecType 3300
data : String 3301
<<extension point>> 3302
--- 3303

3304 The ALE implementation SHALL interpret the fields of a CCOpDataSpec as follows.

Field Type Description
specType CCOpDataSpecType Specifies what kind of data

source provides the data to the
command. See Section 9.3.7
and the table below.

data String Further specifies the data
source according to the
specType. See the table
below.

Table 65. CCOpDataSpec Fields 3305

3306
3307

The ALE implementation SHALL use the following table to determine what data value is
used for the command that includes a CCOpDataSpec.

Value of
specType

Data to be used as input to the command

LITERAL The value of the data parameter itself, interpreted according to the
format implied by the fieldspec of the enclosing CCOpSpec.

PARAMETER The value parameter of the name/value pair occurring in the
CCParameterList argument to poll whose name parameter is
equal to the data parameter of this CCOpDataSpec. The value
parameter of the name/value pair is interpreted according to the
format implied by the fieldspec of the enclosing CCOpSpec.

CACHE The next EPC value taken from the EPC Cache whose name is equal
to data.

 Copyright © 2004–2009 EPCglobal®, All Rights Reserved.Page 145 of 229

Value of
specType

Data to be used as input to the command

ASSOCIATION The value obtained from looking up the EPC of the Tag being
operated upon in the association table whose name is equal to data.
The EPC to be used is (a) the EPC that was to be written by the most
recent operation in the CCCmdSpec that writes the EPC field; or (b)
the EPC read from the Tag, if no operation in this CCCmdSpec
prior to this one writes the EPC field.

RANDOM The next random value generated from the RNG whose name is
equal to data.

Table 66. CCOpDataSpec specType Fields 3308

3309
3310
3311
3312
3313
3314

The define and immediate methods SHALL raise a
CCSpecValidationException if any of the following are true for a
CCOpDataSpec instance, according to the value of specType. In addition, the
define and immediate methods SHALL raise a
CCSpecValidationException if a CCOpDataSpec instance is supplied but in
Table 64 the opType specifies “[must be omitted]” in the fourth column.

Value of
specType

Conditions under which a CCValidationException is raised

LITERAL • The opType is CHECK or INITIALIZE and the specified
value is not legal according to Sections 9.3.5.1 and 9.3.5.2

• The opType is LOCK and the specified value is not legal
according to Section 9.3.8

• The opType is something other than CHECK, INITIALIZE, or
LOCK, and the specified data value is not valid syntax for the
datatype and format implied by the fieldspec of the
enclosing CCOpSpec.

PARAMETER • The opType is CHECK, INITIALIZE, or LOCK.

CACHE • The opType is CHECK, INITIALIZE, or LOCK.

• There is no EPC Cache whose name is equal to data.

• The datatype implied by the fieldspec of the enclosing
CCOpSpec is not epc.

 Copyright © 2004–2009 EPCglobal®, All Rights Reserved.Page 146 of 229

Value of
specType

Conditions under which a CCValidationException is raised

ASSOCIATION • The opType is CHECK, INITIALIZE, or LOCK.

• There is no association table whose name is equal to data.

• The opType is WRITE or ADD, and the datatype of the specified
association table is not the same as the datatype implied by the
fieldspec of the opSpec.

• The opType is PASSWORD or KILL, and the datatype of the
specified association table is not uint.

RANDOM • The opType is CHECK, INITIALIZE, or LOCK.

• There is no RNG whose name is equal to data.

• The datatype implied by the fieldspec of the enclosing
CCOpSpec is not uint.

Table 67. CCOpDataSpec Validation Rules 3315

 Copyright © 2004–2009 EPCglobal®, All Rights Reserved.Page 147 of 229

9.3.7 CCOpDataSpecType 3316
<<Enumerated Type>> 3317
CCOpDataSpecType 3318

LITERAL 3319
PARAMETER 3320
CACHE 3321
ASSOCIATION 3322
RANDOM 3323
<<extension point>> 3324

9.3.8 CCLockOperation 3325
<<Enumerated Type>> 3326
CCLockOperation 3327

UNLOCK 3328
PERMAUNLOCK 3329
LOCK 3330
PERMALOCK 3331
<<extension point>> 3332

3333
3334

The ALE implementation SHALL interpret the data parameter of a LOCK command as
follows:

CCLockOperation value Description
UNLOCK The field is unlocked; subsequent privileged operations on

this field may be performed without supplying a password.
PERMAUNLOCK The field is permanently unlocked; subsequent privileged

operations on this field may be performed without
supplying a password, and any attempt to change the lock
status of this field results in a PERMISSION_ERROR.

LOCK The field is locked; subsequent privileged operations on
this field may be performed only if a password is supplied.

PERMALOCK The field is permanently locked; subsequent privileged
operations on this field cannot be performed, and any
attempt to change the lock status of this field results in a
PERMISSION_ERROR.

Table 68. CCLockOperation Values 3335

 Copyright © 2004–2009 EPCglobal®, All Rights Reserved.Page 148 of 229

The ALE implementation SHALL interpret “subsequent privileged operations” when
interacting with a Gen2 Tag as follows:

3336
3337

Fieldname Subsequent privileged operations
killPwd
accessPwd

Read and Write operations.

epcBank
tidBank
userBank

Write operations.

Table 69. Meaning of “subsequent privileged operations” 3338

3340
3341

9.3.9 CCStatProfileName 3339
Each valid value of CCStatProfileName names a statistics profile that can be
included in an CCReports.

<<Enumerated Type>> 3342
CCStatProfileName 3343

<<extension point>> 3344

3345
3346

3348
3349

3351

3353

3357

3359
3360
3361

This specification does not define any statistics profiles for the Writing API. Vendors,
however, MAY implement their own proprietary profiles.

9.3.10 Validation of CCSpecs 3347
The define and immediate methods of the ALECC API (Section 9.1) SHALL raise
a CCSpecValidationException if any of the following are true:

• The specified specName is an empty string or is not accepted by the implementation 3350
according to Section 4.5.

• The logicalReaders parameter of CCSpec is null, omitted, is an empty list, or 3352
contains any logical reader names that are not known to the implementation.

• The boundarySpec parameter of CCSpec is null or omitted. 3354

• The cmdSpecs parameter of CCSpec is null, omitted, or empty. 3355

• The duration, repeatPeriod, or noNewTagsInterval parameter of 3356
CCBoundarySpec is negative.

• Any element of the startTriggerList or stopTriggerList parameter of 3358
CCBoundarySpec does not conform to URI syntax as defined by [RFC2396], or is
a URI that is not supported by the ALE implementation. Note that an empty string
does not conform to URI syntax as defined by [RFC2396].

• The tagsProcessedCount of CCBoundarySpec is negative. 3362

 Copyright © 2004–2009 EPCglobal®, All Rights Reserved.Page 149 of 229

• No stopping condition apart from afterError is specified in CCBoundarySpec; 3363
i.e., stopTriggerList is empty, and neither duration nor
tagsProcessedCount nor noNewTagInterval nor any vendor extension
stopping condition is specified.

3364
3365
3366

3368

3371
3372

3374
3375

3377

3379

3382

3384

3387

3389

3391

3393

• Any CCCmdSpec instance has a name that is an empty string or that is not accepted 3367
by the implementation according to Section 4.5.

• Two CCCmdSpec instances have identical values for their name fields. 3369

• The patList parameter of any ECFilterListMember instance is empty, null, 3370
or omitted, or any element of patList does not conform to the syntax rules for
patterns implied by the specified fieldspec.

• The opType parameter of a CCOpSpec is not one of the standard opType values 3373
specified in Section 9.3.5, or an implementation-specific value known to the ALE
implementation.

• The opType parameter of a CCOpSpec requires a fieldspec, and fieldspec 3376
is null or omitted.

• The opType parameter of a CCOpSpec does not require a fieldspec, and 3378
fieldspec is specified.

• The fieldspec parameter of a CCOpSpec is invalid according to Section 8.2.12. 3380

• The opType parameter of a CCOpSpec requires a dataSpec, and dataSpec is 3381
null or omitted.

• The opType parameter of a CCOpSpec does not require a dataSpec, and 3383
dataSpec is specified.

• The dataSpec parameter of a CCOpSpec is invalid according to Section 9.3.6. 3385

• The dataSpec parameter of a CCOpSpec specifies a value that is invalid for the 3386
specified operation, as specified in Section 9.3.6.

• Two or more CCOpSpec instances within the same CCCmdSpec instance specify 3388
the same (non-empty) opName.

• Any value of CCStatProfileName is not recognized, or is recognized but the 3390
specified statistics report is not supported.

9.4 CCReports 3392
The CCReports object is the output from a command cycle.

 Copyright © 2004–2009 EPCglobal®, All Rights Reserved.Page 150 of 229

CCReports 3394
specName: String 3395
date: dateTime 3396
ALEID: String 3397
totalMilliseconds: long 3398
initiationCondition : CCInitiationCondition 3399
initiationTrigger : ECTrigger 3400
terminationCondition: CCTerminationCondition 3401
terminationTrigger : ECTrigger 3402
CCSpec: CCSpec 3403
cmdReports: List<CCCmdReport> 3404
<<extension point>> 3405
--- 3406

3407
3408
3409
3410
3411
3412

The “meat” of a CCReports instance is the ordered list of CCCmdReport instances,
each corresponding to a CCReportSpec instance in the command cycle’s CCSpec,
and appearing in the order corresponding to the CCSpec. In addition to the reports
themselves, CCReports contains a number of “header” fields that provide useful
information about the command cycle. The implementation SHALL include these fields
according to the following definitions:

Field Description
specName The name of the CCSpec that controlled this command

cycle. In the case of a CCSpec that was requested using
the immediate method (Section 9.1), this name is one
chosen by the ALE implementation.

date A representation of the date and time when the command
cycle ended. For bindings in which this field is
represented textually, an ISO-8601 compliant
representation SHOULD be used.

ALEID An identifier for the deployed instance of the ALE
implementation. The meaning of this identifier is
outside the scope of this specification.

totalMilliseconds The total time, in milliseconds, from the start of the
command cycle to the end of the command cycle.

 Copyright © 2004–2009 EPCglobal®, All Rights Reserved.Page 151 of 229

Field Description
initiationCondition Indicates what kind of event caused the command cycle

to initiate: the receipt of an explicit start trigger, the
expiration of the repeat period, or a transition to the
requested state when no start triggers were specified in
the CCSpec. These correspond to the possible ways of
specifying the start of a command cycle as defined in
Section 9.3.1.

initiationTrigger If initiationCondition is TRIGGER, the
ECTrigger instance corresponding to the trigger that
initiated the command cycle; omitted otherwise.

terminationCondition Indicates what kind of event caused the command cycle
to terminate: the receipt of an explicit stop trigger, the
expiration of the command cycle duration, no Tags being
processed for the prescribed amount of time, the “tags
processed count” being reached, or an error during
processing a Tag. These correspond to the possible ways
of specifying the end of a command cycle as defined in
Section 9.3.1.

terminationTrigger If terminationCondition is TRIGGER, the
ECTrigger instance corresponding to the trigger that
terminated the command cycle; omitted otherwise.

CCSpec A copy of the CCSpec that generated this CCReports
instance. Only included if the CCSpec has
includeSpecInReports set to true.

Table 70. CCReports Fields 3413

3415
3416

9.4.1 CCInitiationCondition 3414
CCInitiationCondition is an enumerated type that describes how a command
cycle was started.

 Copyright © 2004–2009 EPCglobal®, All Rights Reserved.Page 152 of 229

<<Enumerated Type>> 3417
CCInitiationCondition 3418

TRIGGER 3419
REPEAT_PERIOD 3420
REQUESTED 3421
UNDEFINE 3422
<<extension point>> 3423

3424
3425
3426

The ALE implementation SHALL set the initiationCondition field of a
CCReports instance generated at the conclusion of a command cycle according to the
condition that caused the command cycle to start, as specified in the following table.

CCInitiationCondition Event causing the command cycle to start
TRIGGER One of the triggers specified in startTriggerList of

CCBoundarySpec was received.

REPEAT_PERIOD The repeatPeriod specified in the CCBoundarySpec
expired, or the command cycle started immediately after the
previous command cycle ended because neither a start trigger
nor a repeat period was specified.

REQUESTED The CCSpec transitioned from the unrequested state to the
requested state and startTriggerList in
CCBoundarySpec was empty.

UNDEFINE Used when an outstanding poll call is terminated due to an
undefine call, while the CCSpec was in the requested state
(that is, before any start condition actually occurred). See
Section 5.6.1.

Table 71. CCInitiationCondition Values 3427

3428
3429

3431
3432

Each row of this table corresponds to one of the possible start conditions specified in
Section 9.3.1.

9.4.2 CCTerminationCondition 3430
CCTerminationCondition is an enumerated type that describes how a command
cycle was ended.

 Copyright © 2004–2009 EPCglobal®, All Rights Reserved.Page 153 of 229

<<Enumerated Type>> 3433
CCTerminationCondition 3434

TRIGGER 3435
DURATION 3436
NO_NEW_TAGS 3437
COUNT 3438
ERROR 3439
UNREQUEST 3440
UNDEFINE 3441
<<extension point>> 3442

3443
3444
3445

The ALE implementation SHALL set the terminationCondition field of a
CCReports instance generated at the conclusion of a command cycle according to the
condition that caused the command cycle to end, as specified in the following table.

CCTerminationCondition Event causing the command cycle to end
TRIGGER One of the triggers specified in stopTriggerList of

CCBoundarySpec was received.

DURATION The duration specified in the CCBoundarySpec
expired.

NO_NEW_TAGS No new Tags were processed within the
noNewTagsInterval specified in the
CCBoundarySpec.

COUNT The tagsProcessedCount limit specified in the
CCBoundarySpec was reached.

ERROR The afterError parameter in CCBoundarySpec was
true and an error was encountered in carrying out a
CCOpSpec on a Tag.

UNREQUEST The CCSpec transitioned to the unrequested state. By
definition, this value cannot actually appear in a
CCReports instance sent to any client.

UNDEFINE The CCSpec was removed by an undefine call while in
the requested or active state. See Section 5.6.1.

Table 72. CCTerminationCondition Values 3446

3447
3448

Each row of this table corresponds to one of the possible stop conditions specified in
Section 9.3.1.

 Copyright © 2004–2009 EPCglobal®, All Rights Reserved.Page 154 of 229

9.4.3 CCCmdReport 3449
Each CCCmdSpec in the CCSpec is associated with a CCCmdReport. 3450

CCCmdReport 3451
cmdSpecName: String 3452
tagReports: List<CCTagReport> 3453
<<extension point>> 3454
--- 3455

3456 An ALE implementation SHALL construct a CCCmdReport as follows:

Field Type Description
cmdSpecName String A copy of the cmdSpecName field from

the corresponding CCCmdSpec within the
CCSpec that controlled this command
cycle.

tagReports List<CCTagReport> An unordered list of CCTagReport
instances, one for each Tag processed
during the command cycle that matches the
filter conditions of the corresponding
CCCmdSpec.

Table 73. CCCmdReport Fields 3457

3459
9.4.4 CCTagReport 3458
A CCTagReport describes what happened during the processing of a single Tag.

CCTagReport 3460
id : String 3461
opReports : List<CCOpReport> 3462
stats : List<CCTagStat> 3463
<<extension point>> 3464
--- 3465

3466 An ALE implementation SHALL construct a CCTagReport as follows:

 Copyright © 2004–2009 EPCglobal®, All Rights Reserved.Page 155 of 229

Field Type Description
id String (Optional) A data value that identifies the

Tag that was operated upon. When a Tag
Protocol normally reports a tag identifier (that
is, a data value that serves to distinguish one
Tag from another) when operating upon a
Tag, the ALE implementation SHOULD
include this value here. In particular, when
operating upon a Gen2 Tag, an ALE
implementation SHOULD include the EPC
value read from the Tag during singulation
(i.e., before any operations are performed
upon the Tag in this command cycle). When
the id field is an EPC, it SHALL be reported
in epc-tag format.

opReports List<CCOpReport> An ordered list of CCOpReport instances,
one for each of the corresponding CCOpSpec
instances in the corresponding CCCmdSpec,
in the corresponding order.

stats List<CCTagStat> Null, if the statProfileNames parameter
of the corresponding CCCmdSpec is empty,
omitted, or null. Otherwise, contains a
CCTagStat for each statistics profile named
in the statProfileNames parameter of
the corresponding CCCmdSpec, in the
corresponding order.

Table 74. CCTagReport Fields 3467

3469
3470

9.4.5 CCOpReport 3468
A CCOpReport contains the result of a single CCOpSpec executing on a single Tag
during a command cycle.

CCOpReport 3471
data : String // Conditional 3472
opStatus : CCStatus 3473
opName : String // Conditional 3474
<<extension point>> 3475
--- 3476

3477 An ALE implementation SHALL construct a CCOpReport as follows:

 Copyright © 2004–2009 EPCglobal®, All Rights Reserved.Page 156 of 229

Field Type Description
data String (Conditional) The result of the operation,

according to the table below, or null if an
error occurred.

opStatus CCStatus Specifies whether the operation succeeded or
failed (see Section 9.4.6).

opName String (Conditional) A copy of the opName
parameter of the corresponding CCOpSpec.
Omitted if the opName parameter was
omitted from the corresponding CCOpSpec.

Table 75. CCOpReport Fields 3478

3479 The value of the data field SHALL be constructed according to the following table:

CCOpType
Value

Description data Value

READ Read from memory The value that was read, formatted
according to the fieldspec parameter of
the corresponding CCOpSpec.

WRITE Write to memory The value that was written, formatted
according to the fieldspec parameter of
the corresponding CCOpSpec.

PASSWORD Provide a password to
enable subsequent
commands; for Gen2
Tags, this transitions the
tag to the “secured”
state.

Null

KILL Kill a tag; for Gen2
Tags this means to use
the Gen2 “kill”
command.

Null

LOCK Sets access permissions
for a memory field

Null

Table 76. CCOpReport data Field Values 3480

3482
3483

9.4.6 CCStatus 3481
CCStatus is an enumerated value that lists the several possible outcomes for a given
operation.

 Copyright © 2004–2009 EPCglobal®, All Rights Reserved.Page 157 of 229

<<Enumerated Type>> 3484
CCStatus 3485

SUCCESS 3486
MISC_ERROR_TOTAL 3487
MISC_ERROR_PARTIAL 3488
PERMISSION_ERROR 3489
PASSWORD_ERROR 3490
FIELD_NOT_FOUND_ERROR 3491
OP_NOT_POSSIBLE_ERROR 3492
OUT_OF_RANGE_ERROR 3493
FIELD_EXISTS_ERROR 3494
MEMORY_OVERFLOW_ERROR 3495
MEMORY_CHECK_ERROR 3496
ASSOCIATION_TABLE_VALUE_INVALID 3497
ASSOCIATION_TABLE_VALUE_MISSING 3498
EPC_CACHE_DEPLETED 3499
<<extension point>> 3500

3501
3502
3503

3504
3505

The codes that contain ERROR in their names are errors that arise during the interaction
between the ALE implementation and the Tag. The other codes (apart from SUCCESS)
result from conditions that can be detected without interacting with the Tag.

An ALE implementation SHALL return CCStatus codes according to the following
table:

Status Code Description
SUCCESS The operation completed successfully.
MISC_ERROR_TOTAL An error occurred during the processing of this

operation that resulted in total failure. The state of the
Tag following the operation attempt is unchanged. An
ALE implementation SHALL return this code only if no
more specific code applies.

 Copyright © 2004–2009 EPCglobal®, All Rights Reserved.Page 158 of 229

Status Code Description
MISC_ERROR_PARTIAL An error occurred during the processing of this

operation that resulted in partial failure. The state of the
Tag following the operation attempt is indeterminate.
For example, if a WRITE operation requires issuing two
write commands via an RFID Tag’s Air Interface, a
failure during the second Air Interface command results
in partial failure of the overall WRITE operation. An
ALE implementation SHALL return this code only if no
more specific code applies.

PERMISSION_ERROR The operation failed because the Tag denied permission:
for example, an attempt to write to a locked field of a
Gen2 RFID Tag without first supplying an access
password. An ALE implementation SHALL return this
code only if the denial of permission resulted in total
failure.

PASSWORD_ERROR (PASSWORD operation only) The supplied password
was incorrect.

FIELD_NOT_FOUND_
ERROR

The specified field of the Tag was not found (see
Section 5.4).

OP_NOT_POSSIBLE_
ERROR

The specified operation is not possible on the specified
field of the Tag (see the “operation not possible”
condition specified in Section 5.4). In contrast to
PERMISSION_ERROR, which indicates an error that
could be overcome by supplying appropriate credentials
or by an appropriately privileged client,
OP_NOT_POSSIBLE_ERROR indicates that limitations
of the Tag or the ALE implementation prevent this
operation from being carried out on the specified field
under any circumstances.

OUT_OF_RANGE_ERROR The specified value could not be encoded using the
available number of bits (see the “out of range”
condition specified in Section 5.4).

This applies to the WRITE and ADD operations for fixed
fields, as well as to the PASSWORD and KILL
operations.

FIELD_EXISTS_ERROR The ADD operation failed because the specified field
already exists in memory. This error cannot occur for a
fixed field fieldspec.

 Copyright © 2004–2009 EPCglobal®, All Rights Reserved.Page 159 of 229

Status Code Description
MEMORY_OVERFLOW_
ERROR

Attempting to add a new field or modify an existing
variable-length field to the memory bank would
overflow the free memory left in the memory bank.

MEMORY_CHECK_ERROR The CHECK operation failed.
ASSOCIATION_TABLE_
VALUE_INVALID

The value retrieved from the association table was not
valid syntax for the datatype and format implied by the
fieldspec parameter of the CCOpSpec.

ASSOCIATION_TABLE_
VALUE_MISSING

The association table did not contain a value for the EPC
read from the Tag.

EPC_CACHE_DEPLETED The specified EPC Cache was empty at the time of the
operation attempt.

Table 77. CCStatus Values 3506

Explanation (non-normative): The ALE specification only provides for a status code to 3507
be returned on a per operation basis. If an implementation wants to report additional 3508
information about a particular operation, it may do so through vendor extension or 3509
through out-of-band mechanisms such as logging. 3510

3512
3513
3514

9.4.7 CCTagStat 3511
A CCTagStat provides additional, implementation-defined information about each
“sighting” of a Tag, that is, each time a Tag is acquired by one of the Readers
participating in the command cycle.

CCTagStat 3515
profile : CCStatProfileName 3516
statBlocks : List<ECReaderStat> 3517
--- 3518

3519 An ALE implementation SHALL construct a CCTagStat as follows:

Field Type Description
profile CCStatProfileName The name of the statistics profile that

governed the generation of this
CCTagStat instance.

statBlocks List<ECReaderStat> An unordered list containing an
ECReaderStat instance for each Reader
that sighted this Tag.

Table 78. CCTagStat Fields 3520

3521
3522

Note that CCTagStat is identical to ECTagStat (Section Table 52), except that the
profile parameter is an instance of CCStatProfileName instead of

 Copyright © 2004–2009 EPCglobal®, All Rights Reserved.Page 160 of 229

ECStatProfileName. The remaining content shares the ECReaderStat and
ECSightingStat classes defined in the Reading API.

3523
3524

3526
3527
3528
3529

9.5 EPCCache 3525
An EPCCache is a set of EPC values maintained by the ALE implementation, used to
provide a value to the WRITE command in CCOpSpec (see Section 9.3.4). ALE clients
define and maintain EPCCaches through the following API methods, which are part of
the ALECC interface.

<<interface>> 3530
ALECC 3531

[Continued from Section 9.1] 3532
--- 3533
defineEPCCache(cacheName : String, spec : EPCCacheSpec, 3534
replenishment : EPCPatternList) : void 3535
undefineEPCCache(cacheName : String) : EPCPatternList 3536
getEPCCache(cacheName : String) : EPCCacheSpec 3537
getEPCCacheNames() : List<String> // returns a list of 3538
cacheNames as strings 3539
replenishEPCCache(cacheName : String, replenishment : 3540
EPCPatternList) : void 3541
depleteEPCCache(cacheName : String) : EPCPatternList 3542
getEPCCacheContents(cacheName : String) : EPCPatternList 3543
<<extension point>> 3544

3545
3546

An ALE implementation SHALL implement the above methods of the ALE Writing API
as specified in the following table:

Method Description
defineEPCCache Creates an EPC Cache whose name is cacheName, with

initial contents as specified by replenishment. The
spec parameter, if non-null, specifies implementation-
specific parameters that control the operation of the EPC
Cache. If spec is null, the implementation SHALL use
default settings for any controls of this kind.

undefineEPCCache Removes the EPC Cache whose name is cacheName.
The remaining contents of the EPCCache at the time of
removal is returned.

getEPCCache Returns the (possibly null) value of the spec parameter
that was provided to the defineEPCCache method at
the time the EPC Cache was created.

 Copyright © 2004–2009 EPCglobal®, All Rights Reserved.Page 161 of 229

Method Description
getEPCCacheNames Returns an unordered list of the names of all currently

defined EPC Caches.
replenishEPCCache Appends replenishment to the end of the current

contents of the EPC Cache named cacheName.

depleteEPCCache Removes all EPCs from the EPC Cache named
cacheName, and returns an EPCPatternList
instance to the caller that enumerates the EPCs that were
in the cache at the time they were removed.

getEPCCacheContents Returns an EPCPatternList instance that enumerates
the EPCs currently in the EPC Cache named
cacheName.

Table 79. ALECC Interface Methods (continued from Table 56) 3547
3548
3549
3550
3551
3552
3553
3554
3555
3556
3557

3558
3559
3560

3562
3563
3564

The implementation SHALL maintain each defined EPC Cache in the following manner.
An EPC Cache is an ordered list of EPCs, whose initial contents is specified by the
replenishment argument to defineEPCCache. The EPC Cache may be referred
to by name in a CCOpDataSpec whose specType is equal to CACHE. Each time
during a command cycle that a Tag is processed using that CCOpDataSpec, the first
element of the EPC Cache is removed and used as the value for the operation specified in
the CCOpSpec. If there is no first element (because the EPC Cache is empty), then the
operation results in an EPC_CACHE_DEPLETED error that is reported in the
CCOpReport for that Tag. At any time, the ALE client may add more EPCs to the end
of list by invoking the replenishEPCCache method.

The ALE implementation may represent the list of EPCs in any manner it wishes, so
long as the net result is equivalent to the description above. In particular, it may maintain
the state of the list in any suitable store, including an external store.

9.5.1 Exceptions 3561
Methods of the ALE Writing API defined in Section 9.5 signal error conditions to the
client by means of exceptions, some of which are specified in Section 9.1.1, others as
specified below.

 Copyright © 2004–2009 EPCglobal®, All Rights Reserved.Page 162 of 229

Exception Name Meaning
EPCCacheSpec-
ValidationException

The specified EPCCacheSpec is not valid. The
specific conditions under which this exception is
raised are vendor specific. This exception
SHALL NOT be raised, however, if the spec
argument to defineEPCCache is null, or if the
implementation has not made any extensions to
EPCCacheSpec. Moreover, all
implementations SHALL raise this exception if
the specified cacheName is an empty string or
is not accepted by the implementation according
to Section 4.5.

InvalidPatternException The replenishment parameter of
defineEPCCache or replenishEPCCache
is invalid.

InUseException The specified EPC Cache cannot be undefined,
because there exist one or more CCSpecs that
refer to it.

Table 80. Exceptions in the ALECC Interface (continued from Table 57) 3565
3566
3567
3568
3569
3570

The exceptions that may be raised by each Writing API method from Section 9.5 are
indicated in the table below. An ALE implementation SHALL raise the appropriate
exception listed below when the corresponding condition described above and in
Section 9.1.1 occurs. If more than one exception condition applies to a given method
call, the ALE implementation may raise any of the exceptions that applies.

ALE Method Exceptions
defineEPCCache DuplicateNameException

EPCCacheSpecValidationException
InvalidPatternException
SecurityException
ImplementationException

undefineEPCCache NoSuchNameException
InUseException
SecurityException
ImplementationException

getEPCCache NoSuchNameException
SecurityException
ImplementationException

getEPCCacheNames SecurityException
ImplementationException

 Copyright © 2004–2009 EPCglobal®, All Rights Reserved.Page 163 of 229

ALE Method Exceptions
replenishEPCCache NoSuchNameException

InvalidPatternException
SecurityException
ImplementationException

depleteEPCCache NoSuchNameException
SecurityException
ImplementationException

getEPCCacheContents NoSuchNameException
SecurityException
ImplementationException

Table 81. Exceptions Raised by each ALECC Interface Method (continued from Table 58) 3571

3573
3574
3575
3576
3577
3578

9.5.2 EPCCacheSpec 3572
The EPCCacheSpec class contains only an extension point. Implementations MAY
define extensions to this class in order to provide additional parameters to control the
behavior of an EPC Cache. For example, if an implementation wishes to provide a
mechanism to notify clients when an EPC Cache is nearing empty, it may use extensions
to EPCCacheSpec to configure this mechanism, such as providing an address for
sending notifications, a threshold level for notification, and so on.

EPCCacheSpec 3579
<<extension point>> 3580
--- 3581

3583
9.5.3 EPCPatternList 3582
An EPCPatternList specifies an ordered list of EPCs, using EPC pattern syntax.

EPCPatternList 3584
patterns : List<String> 3585
--- 3586

3587 An ALE implementation SHALL interpret the fields of EPCPatternList as follows:

Field Type Description
patterns List<String> An ordered list, each of which is an EPC pattern URI

as defined in [TDS1.3.1] containing at most one field
that is a [lo-hi] range or a * wildcard, which field
must be numeric. The interpretation of these patterns
is specified below.

Table 82. EPCPatternList Fields 3588

 Copyright © 2004–2009 EPCglobal®, All Rights Reserved.Page 164 of 229

An ALE implementation SHALL interpret each EPC pattern URI element of patterns
as denoting an ordered list of individual EPCs obtained by enumerating in ascending
numerical order all EPCs that match the pattern. An ALE implementation SHALL
interpret the overall EPCPatternList instance as denoting an ordered list of
individual EPCs obtained by concatenating, in order, the EPCs denoted by each EPC
pattern URI element.

3589
3590
3591
3592
3593
3594

Example (non-normative): For example, an EPCPatternList containing the 3595
following three pattern URIs: 3596
urn:epc:pat:sgtin-96:0.0614141.112345.[0-2] 3597
urn:epc:pat:sgtin-96:0.0614141.112345.100 3598
urn:epc:pat:sgtin-96:0.0614141.112345.[1000-1001] 3599

denotes the following list of six EPCs: 3600
urn:epc:tag:sgtin-96:0.0614141.112345.0 3601
urn:epc:tag:sgtin-96:0.0614141.112345.1 3602
urn:epc:tag:sgtin-96:0.0614141.112345.2 3603
urn:epc:tag:sgtin-96:0.0614141.112345.100 3604
urn:epc:tag:sgtin-96:0.0614141.112345.1000 3605
urn:epc:tag:sgtin-96:0.0614141.112345.1001 3606

Note that wildcard fields must be numeric, so that the following pattern URI is not valid: 3607
urn:epc:tag:sgtin-198:0.0614141.112345.* 3608

Because the serial number (rightmost) field of an SGTIN-198 EPC is alphanumeric, it 3609
may not be used as a pattern for an EPCPatternList. If specified it will lead to an 3610
InvalidPatternException. 3611

3613
3614
3615
3616
3617

9.6 AssociationTable 3612
An association table provides a list of name-value pairs where the name is an EPC and
the value is a string. These tables are maintained by the ALE implementation and used to
provide the appropriate value to the WRITE, PASSWORD and KILL commands in a
CCOpSpec (see Section 9.3.4). ALE clients define and maintain association tables
through the following methods, which are part of the ALECC interface.

 Copyright © 2004–2009 EPCglobal®, All Rights Reserved.Page 165 of 229

<<interface>> 3618
ALECC 3619

[continued from Section 9.1] 3620
--- 3621
defineAssocTable(tableName : String, spec : AssocTableSpec, 3622
entries : AssocTableEntryList) : void 3623
undefineAssocTable(tableName : String) : void 3624
getAssocTableNames() : List<String> // returns a list of 3625
tableNames as strings 3626
getAssocTable(tableName : String) : AssocTableSpec 3627
putAssocTableEntries(tableName : String, entries : 3628
AssocTableEntryList) : void 3629
getAssocTableValue(tableName : String, epc : String) : 3630
String 3631
getAssocTableEntries(tableName : String, patList : 3632
EPCPatternList) : AssocTableEntryList 3633
removeAssocTableEntry(tableName : String, epc : String) : 3634
void 3635
removeAssocTableEntries(tableName : String, patList : 3636
EPCPatternList) : void 3637
<<extension point>> 3638

3639
3640

An ALE implementation SHALL implement the above methods of the ALE Writing API
as specified in the following table:

Method Description
defineAssocTable Creates an EPC Association Table whose name is

tableName, with initial contents as specified by
entries. The spec parameter specifies the
datatype and format for values in the association
table.

undefineAssocTable Deletes the EPC Association Table whose name is
tableName.

getAssocTableNames Returns an unordered list of the names of all defined
EPC Association Tables.

getAssocTable Returns the AssocTableSpec that was specified
when the table whose name is tableName was
defined.

 Copyright © 2004–2009 EPCglobal®, All Rights Reserved.Page 166 of 229

Method Description
putAssocTableEntries Adds or replaces entries in the EPC Association

Table whose name is tableName, according to
entries. For each member of entries that
specifies a key that is not currently in the table, a
new entry is created. For each member of
entries that specifies a key that is currently in the
table, the value for the entry is replaced.

getAssocTableValue Returns the value currently associated with the
specified epc in the EPC Association Table named
tableName, in the format specified when the table
was defined, or null if no entry is defined for that
EPC.

getAssocTableEntries Returns an AssocTableEntryList containing
an entry for each EPC that matches one of the
patterns specified in patList and has an entry in
the EPC Association Table named tableName. If
no entries match the specified patterns, an
AssocTableEntryList containing zero entries
is returned. The value field of each entry returned
SHALL be in the format specified when the table
was defined.

removeAssocTableEntry Removes the entry for epc in the EPC Association
Table named tableName, if such an entry exists.
Otherwise, does nothing.

removeAssocTableEntries Removes the entries for any EPC in the EPC
Association Table named tableName that matches
one of the patterns specified in patList. If no
entries match the patterns, does nothing.

Table 83. ALECC Interface Methods (continued from Table 79) 3641
3642
3643
3644

3646
3647
3648

The ALE implementation may represent an association table in any manner it wishes, so
long as the net result is equivalent to the description above. In particular, it may maintain
the state of a table in any suitable store, including an external store.

9.6.1 Exceptions 3645
Methods of the ALE Writing API defined in Section 9.6 signal error conditions to the
client by means of exceptions, some of which are specified in Section 9.1.1, others as
specified below.

 Copyright © 2004–2009 EPCglobal®, All Rights Reserved.Page 167 of 229

Exception Name Meaning
AssocTableValidationException The spec parameter of

defineAssocTable is invalid, as
specified in Section 9.6.2 or the
tableName parameter is an empty string
or is not accepted by the implementation
according to Section 4.5.

InvalidPatternException (same
exception as defined in Section 9.5.1)

The patList parameter of
getAssocTableEntries or
removeAssocTableEntries is
invalid.

InvalidEPCException The specified epc parameter is not valid
syntax for one of the EPC data type formats
indicated as “RW” in the table in
Section 6.2.1.1.

InvalidAssocTableEntry-
Exception

The entries parameter of
defineAssocTable or
putAssocTableEntries contains two
entries having the same key, contains a key
that is not valid syntax for one of the EPC
data type formats indicated as “RW” in the
table in Section 6.2.1.1, or contains a value
that is not valid syntax for the datatype and
format specified when the table was
defined. In the event this exception is
raised, the ALE implementation SHALL
NOT define a new association table nor
modify an existing association table, even if
some entries in the entries parameter
were valid.

InUseException (Same exception as
defined in Section 9.5.1.)

The specified Association Table cannot be
undefined, because there exist one or more
CCSpecs that refer to it.

Table 84. Exceptions in the ALECC Interface (continued from Table 80) 3649
3650
3651
3652
3653
3654

The exceptions that may be raised by each Writing API method from Section 9.6 are
indicated in the table below. An ALE implementation SHALL raise the appropriate
exception listed below when the corresponding condition described above and in
Section 9.1.1 occurs. If more than one exception condition applies to a given method
call, the ALE implementation may raise any of the exceptions that applies.

 Copyright © 2004–2009 EPCglobal®, All Rights Reserved.Page 168 of 229

ALE Method Exceptions
defineAssocTable DuplicateNameException

AssocTableValidationException
InvalidAssocTableEntryException
SecurityException
ImplementationException

undefineAssocTable NoSuchNameException
InUseException
SecurityException
ImplementationException

getAssocTableNames SecurityException
ImplementationException

getAssocTable NoSuchNameException
SecurityException
ImplementationException

putAssocTableEntries NoSuchNameException
InvalidAssocTableEntryException
SecurityException
ImplementationException

getAssocTableValue NoSuchNameException
InvalidEPCException
SecurityException
ImplementationException

getAssocTableEntries NoSuchNameException
InvalidPatternException
SecurityException
ImplementationException

removeAssocTableEntry NoSuchNameException
SecurityException
InvalidEPCException
ImplementationException

removeAssocTableEntries NoSuchNameException
InvalidPatternException
SecurityException
ImplementationException

Table 85. Exceptions Raised by each ALECC Interface Method (continued from Table 81) 3655

3657
3658

9.6.2 AssocTableSpec 3656
The AssocTableSpec class specifies the datatype and format for entries in an
association table. Implementations MAY define extensions to this class in order to

 Copyright © 2004–2009 EPCglobal®, All Rights Reserved.Page 169 of 229

provide additional parameters to control the behavior of an Association Table, such as
connections to external storage, etc.

3659
3660

AssocTableSpec 3661
datatype : String 3662
format : String 3663
<<extension point>> 3664
--- 3665

3666 An ALE implementation SHALL interpret an AssocTableSpec instance as follows:

Field Type Description
datatype String Specifies what kind of data values the association table

holds.
format String Specifies the syntax used to present table values through

the methods specified in Section 9.6.

Table 86. AssocTableSpec Fields 3667

3668
3669

3671

3674
3675

The defineAssocTable method SHALL raise an
AssocTableValidationException if any of the following are true:

• The value of datatype is not a valid datatype as specified in Section 6.2 or a 3670
datatype recognized as a vendor extension.

• The value of format is not a valid format for the specified datatype. 3672

9.6.3 AssocTableEntryList 3673
An AssocTableEntryList provides the list of specific key/value pairs utilized by an
EPC Association Table.

AssocTableEntryList 3676
entries : List<AssocTableEntry> 3677
--- 3678

3679
3680

An ALE implementation SHALL interpret the fields of AssocTableEntryList as
follows:

Field Type Description
entries List<AssocTableEntry> An unordered list of

AssocTableEntry instances.

Table 87. AssocTableEntryList Fields 3681

 Copyright © 2004–2009 EPCglobal®, All Rights Reserved.Page 170 of 229

9.6.4 AssocTableEntry 3682
An AssocTableEntry is a single key/value pair within an EPC Association Table. 3683

AssocTableEntry 3684
key : String 3685
value : String 3686
--- 3687

3688 An ALE implementation SHALL interpret the fields of AssocTableEntry as follows:

Field Type Description
key String The EPC for which this entry supplies the associated

value.
value String The value associated with the key, in the syntax

specified when the table was defined.

Table 88. AssocTableEntry Fields 3689

3691
3692
3693
3694

9.7 Random Number Generator 3690
A Random Number Generator (RNG) provides a source of random numbers that can be
used by the WRITE command in a CCOpSpec (see Section 9.3.4). ALE clients define
and maintain random number generators through the following methods, which are part
of the ALECC interface.

<<interface>> 3695
ALECC 3696

[continued from Section 9.1] 3697
--- 3698
defineRNG(rngName : String, rngSpec : RNGSpec) : void 3699
undefineRNG(rngName : String) : void 3700
getRNGNames() : List<String> // returns a list of rngNames 3701
as strings 3702
getRNG(rngName : String) : RNGSpec 3703
<<extension point>> 3704

3705
3706

An ALE implementation SHALL implement the above methods of the ALE Writing API
as specified in the following table:

Method Description
defineRNG Creates a random number generator whose name is

rngName. The rngSpec parameter specifies the
range of the random numbers to be generated.

 Copyright © 2004–2009 EPCglobal®, All Rights Reserved.Page 171 of 229

Method Description
undefineRNG Deletes the random number generator whose name is

rngName.

getRNGNames Returns an unordered list of the names of all defined
random number generators.

getRNG Returns the value of the rngSpec parameter that
was provided to the defineRNG method at the time
the random number generator was created.

Table 89. ALECC Interface Methods (continued from Table 83) 3707

3709
3710
3711

9.7.1 Exceptions 3708
Methods of the ALE Writing API defined in Section 9.7 signal error conditions to the
client by means of exceptions, some of which are specified in Section 9.1.1, others as
specified below.

Exception Name Meaning
RNGValidationException The specified RNGSpec is not valid according to

Section 9.7.2. Moreover, all implementations
SHALL raise this exception if the specified
rngName is an empty string or is not accepted
by the implementation according to Section 4.5.

InUseException (Same
exception as defined in
Section 9.5.1.)

The specified random number generator cannot
be undefined, because there exist one or more
CCSpecs that refer to it.

Table 90. Exceptions in the ALECC Interface (continued from Table 84) 3712
3713
3714
3715
3716
3717

The exceptions that may be raised by each Writing API method from Section 9.7 are
indicated in the table below. An ALE implementation SHALL raise the appropriate
exception listed below when the corresponding condition described above and in
Section 9.1.1 occurs. If more than one exception condition applies to a given method
call, the ALE implementation may raise any of the exceptions that applies.

ALE Method Exceptions
defineRNG DuplicateNameException

RNGValidationException
SecurityException
ImplementationException

undefineRNG NoSuchNameException
InUseException
SecurityException
ImplementationException

 Copyright © 2004–2009 EPCglobal®, All Rights Reserved.Page 172 of 229

ALE Method Exceptions
getRNGNames SecurityException

ImplementationException

getRNG NoSuchNameException
SecurityException
ImplementationException

Table 91. Exceptions Raised by each ALECC Interface Method (continued from Table 85) 3718

3720
3721
3722
3723
3724
3725
3726

9.7.2 RNGSpec 3719
The RNGSpec class specifies the range of random numbers that should be generated by
the random number generator.. Implementations MAY define extensions to this class in
order to provide additional parameters to control the behavior of a random number
generator. This may include, for example, parameters to set an initial seed, parameters to
govern the use of a hardware random number genereator, etc. Implementations SHALL
provide documentation specifying both how the parameters are interpreted by
defineRNG and how the parameters are set when returned from getRNG.

RNGSpec 3727
length : Integer 3728
<<extension point>> 3729
--- 3730

3731 An ALE implementation SHALL interpret an RNGSpec instance as follows:

Field Type Description
length Integer The number of bits for the random numbers

generated by this random number generator.
Random numbers SHALL be in the range 0
through 2length−1, inclusive.

Table 92. RNGSpec Fields 3732

3733
3734

3736
3737

The defineRNG method SHALL raise an RNGValidationException if length
is not a positive integer.

9.8 ALECCCallback Interface 3735
The ALECCCallback interface is the path by which an ALE implementation delivers
asynchronous results from command cycles to subscribers.

 Copyright © 2004–2009 EPCglobal®, All Rights Reserved.Page 173 of 229

<<interface>> 3738
ALECCCallback 3739

--- 3740
callbackResults(reports : CCReports) : void 3741

3742
3743
3744
3745
3746
3747
3748

Referring to the state transition tables in Section 5.6.1, whenever a transition specifies
that “reports are delivered to subscribers” the ALE implementation SHALL attempt to
deliver the results to each subscriber by invoking the callbackResults method of
the ALECCCallback interface once for each subscriber, passing the CCReports for
the command cycle as specified above, and using the binding and addressing information
specified by the notification URI for that subscriber as specified in the subscribe call.
All subscribers receive an identical CCReports instance.

Explanation (non-normative): The ALECCCallback interface is defined very simply, 3749
to allow for a wide variety of possible implementations. A binding of the 3750
ALECCCallback interface may not be a request-response style RPC mechanism at all, 3751
but may instead just be a one-way message transport, where the message payload is the 3752
CCReports instance. Indeed, this is true of all of the standardized bindings of this 3753
interface described in Part II [ALE1.1Part2]. 3754

3756
3757
3758
3759
3760
3761
3762
3763

3765
3766
3767
3768
3769
3770
3771

3772
3773
3774
3775

10 ALE Logical Reader API 3755
The ALE Logical Reader API is an interface through which clients may define logical
reader names for use with the Reading API and the Writing API, each of which maps to
one or more sources/actuators provided by the implementation. The API also provides
for the manipulation of configuration properties associated with logical reader names.
The available properties and their meanings are implementation-specific; however, this
specification defines a small set of standardized properties that may be used to configure
“smoothing” behavior for reading Tags. The specification of the Logical Reader API
follows the general rules given in Section 4.

10.1 Background (non-normative) 3764
In specifying an event cycle or command cycle, an ALE client names one or more
channels through which Tags are accessed. This is usually necessary, as an ALE
implementation may manage many devices that are used for unrelated purposes. For
example, in a large warehouse, there may be ten loading dock doors each having three
RFID readers; in such a case, a typical ALE request may be directed at the three readers
for a particular door, but it is unlikely that an application tracking the flow of goods into
trucks would want the reads from all 30 readers to be combined into a single event cycle.

This raises the question of how ALE clients specify which devices are to be used for a
given event cycle or command cycle. One possibility is to use identities associated with
the reader devices themselves, e.g., a unique name, serial number, EPC, IP address, etc.
This is undesirable for several reasons:

 Copyright © 2004–2009 EPCglobal®, All Rights Reserved.Page 174 of 229

• The exact identities of devices deployed in the field are likely to be unknown at the 3776
time an application is authored and configured. 3777

3779

3781
3782

3783
3784
3785
3786
3787
3788
3789

3790
3791
3792
3793
3794

3795
3796
3797
3798
3799
3800
3801
3802
3803
3804
3805
3806

3808
3809
3810
3811
3812
3813

3814
3815
3816

• If a device is replaced, this unique reader device identity will change, forcing the 3778
application configuration to be changed.

• If the number of devices must change – e.g., because it is discovered that four RFID 3780
reader devices are required instead of three to obtain adequate coverage of a
particular loading dock door – then the application must be changed.

To avoid these problems, ALE introduces the notion of a “logical reader.” Logical
readers are abstract names that a client uses to refer to one or more Readers that have a
single logical purpose; e.g., DockDoor42. Within the implementation of ALE, an
association is maintained between logical names such as DockDoor42 and the physical
devices assigned to fulfill that purpose. Any ALE ECSpec or CCSpec that refers to
DockDoor42 is understood by the ALE implementation to refer to the physical device
(or devices) associated with that name.

Logical reader names may also be used to refer to sources of raw EPC events that are
synthesized from various sources. For example, one vendor may have a technology for
discriminating the physical location of tags by triangulating the results from several RFID
reader devices. This could be exposed in ALE by assigning a synthetic logical reader
name for each discernable location.

Different ALE implementations may provide different ways of mapping logical reader
names to physical reader devices, synthetic readers, and other sources of EPC events.
Configuration information of this kind may be established through static configuration,
vendor-specific APIs, dynamic discovery mechanisms, or other methods. These are key
extensibility points. While implementations are likely to vary widely in the methods and
types of physical device configuration they provide, a very common requirement is to
introduce a logical reader name as simple alias for one or more other logical reader
names. For example, an implementation may provide an implementation-specific way to
configure logical reader names for individual antennas of physical reader devices, but
then a user may wish to define a logical reader name like DockDoor42 as an alias for
three particular logical reader names associated with individual antennas. The Logical
Reader API is intended to provide a standardized way to meet that requirement.

10.2 ALE Logical Reader API 3807
The Logical Reader API specified in the following subsections provides a standardized
way for an ALE client to define a new logical reader name as an alias for one or more
other logical reader names. The API also provides for manipulating “properties”
(name/value pairs) associated with a logical reader name. Finally, the API provides a
means for a client to get a list of all of the logical reader names that are available, and to
learn certain information about each logical reader.

Defining a new logical reader name as an alias for one or more other logical reader names
is not useful unless there exist some logical reader names to begin with. Ultimately, there
must be some logical reader names that correspond to actual channels for manipulating

 Copyright © 2004–2009 EPCglobal®, All Rights Reserved.Page 175 of 229

Tags, that are not themselves aliases for other logical readers. Within this Section 10, the
term “composite reader” refers to a logical reader name that has been defined as an alias
for other logical reader names, and the term “base reader” refers to a logical reader name
that is not defined as an alias, and instead corresponds to an actual channel for
manipulating Tags.

3817
3818
3819
3820
3821

3822
3823
3824
3825
3826
3827
3828
3829
3830
3831
3832

3833

3835
3836

3838
3839
3840
3841
3842

3844
3845
3846
3847

3848
3849

Implementations may vary widely as to how base readers come into existence. For
example, an ALE implementation that is embedded in a four-antenna RFID reader may
provide four fixed logical reader names, one for each antenna. These names exist without
the ALE client making any calls to the Logical Reader API. Another example is a
software implementation of ALE that is designed to interface to many different RFID
readers and other devices via a network; such software may provide a means for users to
configure a new base logical reader name by specifying the device make and model,
network address, and other configuration parameters. Because this specification does not
provide a standardized way to configure base readers, some implementations may
provide a means outside of the ALE API for configuring base readers, while others may
use vendor extensions to the Logical Reader API for this purpose.

In summary, there are three ways that logical readers may come into existence:

• Composite Reader A composite reader is a logical reader that is defined by an ALE 3834
client, using the Logical Reader API, as an alias for other logical reader names, which
themselves may be composite readers or base readers.

• Externally-defined Base Reader An externally-defined base reader is a logical reader 3837
that is an actual channel for manipulating Tags, and that is defined by means outside
the Logical Reader API. How such logical readers are defined is implementation-
specific. Subsequently, an implementation may, through vendor extensions, allow a
client to retrieve or change the configuration of an externally-defined base reader.
See Section 10.3.2.

• API-defined Base Reader An API-defined base reader is a logical reader that is an 3843
actual channel for manipulating Tags, and that is defined through the Logical Reader
API. Because the Logical Reader API does not provide a standardized way of
defining base readers, an API-defined base reader can only be created through the use
of vendor extensions. See Section 10.3.2.

The conformance requirements in Section 10.3.2 specify which of these possibilities an
implementation must support.

 Copyright © 2004–2009 EPCglobal®, All Rights Reserved.Page 176 of 229

10.3 API 3850
<<interface>> 3851

ALELR 3852
--- 3853
define(name : String, spec : LRSpec) : void 3854
update(name : String, spec : LRSpec) : void 3855
undefine(name : String) : void 3856
getLogicalReaderNames() : List<String> 3857
getLRSpec(name : String) : LRSpec 3858
addReaders(name : String, readers : List<String>) : void 3859
setReaders(name : String, readers : List<String>) : void 3860
removeReaders(name : String, readers : List<String>) : void 3861
setProperties(name : String, properties : List<LRProperty>) 3862
: void 3863
getPropertyValue(name : String, propertyName : String) : 3864
String 3865
getStandardVersion() : String 3866
getVendorVersion() : String 3867
<<extension point>> 3868

3869
3870

An ALE implementation SHALL implement the methods of the ALE Logical Reader
API as specified in the following table:

Method Description
define Creates a new logical reader named name according to

spec.

update Changes the definition of the logical reader named
name to match the specification in the spec
parameter. This is different than calling undefine
followed by define, because update may be called
even if there are defined ECSpecs, CCSpecs, or other
logical readers that refer to this logical reader.

undefine Removes the logical reader named name.

getLogicalReaderNames Returns an unordered list of the names of all logical
readers that are visible to the caller. This list SHALL
include both composite readers and base readers.

 Copyright © 2004–2009 EPCglobal®, All Rights Reserved.Page 177 of 229

Method Description
getLRSpec Returns an LRSpec that describes the logical reader

named name. See Section 10.3.2 for conformance
requirements regarding what information is included in
the LRSpec.

addReaders Adds the specified logical readers to the list of
component readers for the composite logical reader
named name. This is equivalent to calling
getLRSpec, modifying the LRSpec that is returned
to include the specified logical readers in the reader list,
and then calling update with the modified LRSpec.

setReaders Changes the list of component readers for the
composite logical reader named name to the specified
list. This is equivalent to calling getLRSpec,
modifying the LRSpec that is returned by replacing the
reader list with the specified list of logical readers, and
then calling update with the modified LRSpec.

removeReaders Removes the specified logical readers from the list of
component readers for the composite logical reader
named name. Any reader name within readers that
is not currently among the component readers of the
specified logical reader is ignored. This is equivalent
to calling getLRSpec, modifying the LRSpec that is
returned by removing any references to logical readers
in the specified reader list, and then calling update
with the modified LRSpec.

setProperties Changes properties for the logical reader named name
to the specified list. This is equivalent to calling
getLRSpec, modifying the properties in the LRSpec
according to the table below, and then calling update
with the modified LRSpec.

getPropertyValue Returns the current value of the specified property for
the specified reader, or null if the specified reader does
not have a property with the specified name.

getStandardVersion Returns a string that identifies what version of the
specification this implementation of the ALE Logical
Reader API complies with, as specified in Section 4.3.

getVendorVersion Returns a string that identifies what vendor extensions
of the ALE Logical Reader API this implementation
provides, as specified in Section 4.3.

 Copyright © 2004–2009 EPCglobal®, All Rights Reserved.Page 178 of 229

Table 93. ALELR Interface Methods 3871

3872
3873
3874
3875

The setProperties method SHALL modify the properties of a logical reader
according to the following table. For each property, the table specifies the state of that
property following the call to setProperties, as a function of its former state and the
properties parameter to setProperties.

 Logical Reader formerly
did not have property X

Logical Reader formerly
did have property X

properties parameter to
setProperties does
not include property X

No change: logical reader
does not have property X

No change: logical reader
continues to have property
X with the same value.

properties parameter to
setProperties includes
property X, with a null
value

No change: logical reader
does not have property X

Logical reader no longer
has property X.

properties parameter to
setProperties includes
Property X, with a non-null
value

Logical reader now has
property X, with value as
specified in properties
parameter to
setProperties.

Logical reader continues to
have property X, with value
changed to be as specified
in properties parameter
to setProperties.

Table 94. Behavior of the setProperties Method of the ALELR Interface 3876

3877
3878
3879
3880
3881
3882
3883
3884
3885
3886
3887
3888
3889
3890
3891
3892
3893
3894
3895

3896
3897

The update, addReaders, setReaders, removeReaders, and
setProperties methods are intended to allow the definition of a logical reader to be
changed without requiring the client to undefine the reader and then define it again. This
allows these methods to be called even if there exist ECSpecs, CCSpecs, or other
LRSpecs that refer to the logical reader being changed. Not all implementations,
however, may support using these methods to change the definition of a logical reader
that is used by an ECSpec or CCSpec that is active at the time the method is called. The
five methods named above MAY raise an InUseException if at the time the method
is called there is an ECSpec or CCSpec in the active state that includes the specified
logical reader, either directly or indirectly through a composite reader. When an
implementation does not raise the InUseException in this situation, it is
implementation defined as to exactly when the change takes effect, but the change
SHOULD take place as soon as possible. An ALE implementation SHALL provide
documentation of what “as soon as possible” means; for example, saying that “as soon as
possible” means that the change takes place during an event or command cycle, or waits
until the conclusion of any active event or command cycles, or whatever is appropriate.
These methods SHALL NOT raise an InUseException, however, if there are no such
active ECSpecs or CCSpecs at the time the method is called – an implementation must be
prepared to handle these methods when a logical reader is not actively being used.

The undefine method SHALL raise an InUseException if there exist one or more
ECSpecs, CCSpecs, or other LRSpecs that refer to it, whether ECSpecs or CCSpecs are

 Copyright © 2004–2009 EPCglobal®, All Rights Reserved.Page 179 of 229

in the active state or not. This is because the logical reader name does not exist following
an undefine call, and so if allowed to proceed it would leave the ECSpec, CCSpec, or
LRSpec in an inconsistent state.

3898
3899
3900

3902
3903
3904
3905

10.3.1 Error Conditions 3901
Methods of the Logical Reader API signal error conditions to the client by means of
exceptions. The following exceptions are defined. All the exception types in the
following table are extensions of a common ALEException base type, which contains
one string element giving the reason for the exception.

Exception Name Meaning
DuplicateNameException The specified logical reader name already

exists.
NoSuchNameException The specified logical reader name does

not exist.
InUseException For the undefine method, the specified

logical reader cannot be undefined, as
there exist one or more ECSpecs,
CCSpecs, or other LRSpecs that refer to
it. For the update, addReaders,
setReaders, removeReaders, and
setProperties methods, the specified
logical reader cannot be undefined as
there exist one or more ECSpecs or
CCSpecs in the active state that refer to it
(directly or indirectly through composite
readers), and the implementation does not
support changing the logical reader at
such times.

 Copyright © 2004–2009 EPCglobal®, All Rights Reserved.Page 180 of 229

Exception Name Meaning
ValidationException For the define method, the specified

LRSpec is invalid according to
Section 10.4 or the specified name is an
empty string or is not accepted by the
implementation according to Section 4.5.
For the update method, the specified
LRSpec is invalid according to
Section 10.4. For the addReaders or
setReaders method, the specified list
of readers includes a logical reader name
that does not exist. For the
setProperties method, the specified
list of properties includes a property name
that is not recognized by the
implementation or whose value is not
permitted to be changed, or the specified
value for a property is not legal for that
property name.

ImmutableReaderException The specified externally-defined base
reader may not be updated, undefined, or
have the specified properties changed.
This exception SHALL NOT be raised for
a composite reader or an API-defined base
reader.

NonCompositeReaderException The specified reader on which the
addReaders or setReaders
operation is not a composite reader.

ReaderLoopException The operation, if completed, would have
resulted in a composite logical reader
directly or indirectly including itself as a
component.

 Copyright © 2004–2009 EPCglobal®, All Rights Reserved.Page 181 of 229

Exception Name Meaning
SecurityException The operation was not permitted due to an

access control violation or other security
concern. If the Logical Reader API
implementation is associated with an
implementation of the Access Control API
(Section 11), the Logical Reader API
implementation SHALL raise this
exception if the client was not granted
access rights to the called method as
specified in Section 11. Other,
implementation-specific circumstances
may cause this exception; these are
outside the scope of this specification.

ImplementationException A generic exception raised by the
implementation for reasons that are
implementation-specific. This exception
contains one additional element: a
severity member whose values are
either ERROR or SEVERE. ERROR
indicates that the ALE implementation is
left in the same state it had before the
operation was attempted. SEVERE
indicates that the ALE implementation is
left in an indeterminate state.

Table 95. Exceptions in the ALELR Interface 3906
3907
3908
3909
3910
3911

The exceptions that may be raised by each Logical Reader API method are indicated in
the table below. An ALE implementation SHALL raise the appropriate exception listed
below when the corresponding condition described above occurs. If more than one
exception condition applies to a given method call, the ALE implementation may raise
any of the exceptions that applies.

ALE Method Exceptions
define DuplicateNameException

ValidationException
SecurityException
ImplementationException

 Copyright © 2004–2009 EPCglobal®, All Rights Reserved.Page 182 of 229

ALE Method Exceptions
update NoSuchNameException

ValidationException
InUseException
ImmutableReaderException
ReaderLoopException
SecurityException
ImplementationException

undefine NoSuchNameException
InUseException
ImmutableReaderException
SecurityException
ImplementationException

getLogicalReaderNames SecurityException
ImplementationException

getLRSpec NoSuchNameException
SecurityException
ImplementationException

addReaders NoSuchNameException
ValidationException
InUseException
ImmutableReaderException
NonCompositeReaderException
ReaderLoopException
SecurityException
ImplementationException

setReaders NoSuchNameException
ValidationException
InUseException
ImmutableReaderException
NonCompositeReaderException
ReaderLoopException
SecurityException
ImplementationException

removeReaders NoSuchNameException
InUseException
ImmutableReaderException
NonCompositeReaderException
SecurityException
ImplementationException

 Copyright © 2004–2009 EPCglobal®, All Rights Reserved.Page 183 of 229

ALE Method Exceptions
setProperties NoSuchNameException

ValidationException
InUseException
ImmutableReaderException
SecurityException
ImplementationException

getPropertyValue NoSuchNameException
SecurityException
ImplementationException

getStandardVersion ImplementationException

getVendorVersion ImplementationException

Table 96. Exceptions Raised by each ALELR Interface Method 3912

3914
3915
3916

10.3.2 Conformance Requirements 3913
An implementation of the Logical Reader API SHALL implement all of the methods
defined in Section 10.3. In addition, the following conformance requirements that
depend on the type of logical reader apply:

Reader
Type

Definition Modification Introspection

Composite
Reader

The implementation
SHALL allow a new
composite reader to be
defined using the
define method.

The implementation
SHALL allow a
composite reader to be
modified or removed
by the update,
undefine,
addReaders,
setReaders,
removeReaders,
and setProperties
methods.

The implementation
SHALL include the
composite reader’s
name in the result of
getLogical-
ReaderNames. The
implementation
SHALL return an
LRSpec from
getLRSpec that
includes the underlying
logical readers and all
properties that have
been defined.

 Copyright © 2004–2009 EPCglobal®, All Rights Reserved.Page 184 of 229

Reader
Type

Definition Modification Introspection

Externally-
defined
Base
Reader

(Not applicable – by
definition an
externally-defined base
reader is defined by
some means other than
the define method.)

The implementation
MAY allow an
externally-defined base
reader to be modified
or removed by the
update, undefine,
and setProperties
methods. If not, the
implementation
SHALL raise
ImmutableReader-
Exception for any
method it does not
permit.

The implementation
SHALL include the
base reader’s name in
the result of
getLogical-
ReaderNames. The
implementation
SHALL return an
LRSpec from
getLRSpec that
includes any properties
that have been defined
through the Logical
Reader API. The
implementation MAY
also include in the
LRSpec any properties
or other vendor
extensions that provide
additional configuration
information about the
reader.

API-
defined
Base
Reader

The implementation
MAY allow a new base
reader to be defined
using the define
method. The
implementation will
likely require vendor-
specific properties
and/or vendor
extensions to LRSpec
to make this possible.

The implementation
SHALL allow an API-
defined base reader to
be modified or
removed by the
update, undefine,
and setProperties
methods, using the
same vendor-specific
properties and/or
vendor extensions to
LRSpec that were
used in the define
method.

The implementation
SHALL include the
base reader’s name in
the result of
getLogical-
ReaderNames. The
implementation
SHALL return an
LRSpec from
getLRSpec that
includes all properties
and vendor extensions
to LRSpec that have
been defined through
the Logical Reader
API.

Table 97. Conformance Requirements for ALELR Interface Methods 3917
3918
3919

As indicated in the table above, vendor extensions are used to configure API-defined base
readers, and may also be used by getLRSpec to report the configuration of externally-

 Copyright © 2004–2009 EPCglobal®, All Rights Reserved.Page 185 of 229

defined base readers. Such vendor extensions MAY be vendor-specific properties that
appear in the properties parameter of LRSpec and may be modified and accessed
through the setProperties and getPropertyValue methods, or they MAY be
vendor extensions to LRSpec itself, or both.

3920
3921
3922
3923

3925
10.4 LRSpec 3924
An LRSpec describes the configuration of a Logical Reader.

LRSpec 3926
isComposite : Boolean 3927
readers : List<String> 3928
properties: List<LRProperty> 3929
<<extension point>> 3930
--- 3931

3932 The ALE implementation SHALL interpret the fields of an LRSpec as follows.

Field Type Description
isComposite Boolean (Optional) If true, this Logical Reader is a

composite reader that is an alias for the
logical reader or readers specified in the
readers field. If false, this Logical
Reader is a base reader. Defaults to false if
omitted.

readers List<String> (Optional) If isComposite is true, an
unordered list of zero or more names of
logical readers that collectively provide the
channel to access Tags represented by this
Logical Reader. Specifying the name of this
Logical Reader in an ECSpec or CCSpec is
equivalent to specifying the names in
readers, except that different properties
may apply. Omitted if isComposite is
false.

properties List<LRProperty> An unordered list of properties (key/value
pairs) that control how Tags are accessed
using this Logical Reader.

Table 98. LRSpec Fields 3933

3934
3935

The define or update methods of the Logical Reader API SHALL raise a
ValidationException under any of the following circumstances:

• isComposite is false and readers is specified and non-empty. 3936

 Copyright © 2004–2009 EPCglobal®, All Rights Reserved.Page 186 of 229

• isComposite is false and the implementation does not support using the Logical 3937
Reader API to define base readers. 3938

3940
3941

3943

3947
3948
3949

• isComposite is false, the implementation does support using the Logical Reader 3939
API to define base readers, but the LRSpec does not conform to the vendor-specific
rules for such use.

• isComposite is true and any element of readers is not a known Logical Reader 3942
name.

• A property name in properties is not recognized by the implementation. 3944

• The value specified for a property is not a legal value for that property. 3945

10.5 LRProperty 3946
A logical reader property is a name-value pair. Values are generically represented as
strings in the Logical Reader API. The ALE implementation is responsible for any data
type conversions that may be necessary.

LRProperty 3950
name : String 3951
value : String 3952
--- 3953

3954 The ALE implementation SHALL interpret the fields of an LRProperty as follows.

Field Type Description
name String The name of the property. The recognized

names for properties are implementation-
defined. An implementation MAY
recognize the standardized properties for tag
smoothing defined in Section 10.6

value String (Optional) The value of the property.

Table 99. LRProperty Fields 3955

3957
3958
3959
3960
3961
3962
3963
3964

10.6 Tag Smoothing 3956
Tag smoothing is a mechanism whereby a logical reader can be configured to reduce the
appearance of tags moving in and out of a reader’s field of view due to intermittent tag
reads. Smoothing is analogous to circuit-switch debouncing logic. The logic for
smoothing is specified by a finite state machine that is evaluated independently for each
Tag. Associated with each Tag is the current state (one of the three states in the diagram
and table below), real time values Tfirst and Tlast, and a counter TagCount. The real
time value Tnow refers to the current time. Events that affect the state machine include
the sighting by the logical reader of the Tag and the expiration of certain time intervals

 Copyright © 2004–2009 EPCglobal®, All Rights Reserved.Page 187 of 229

calculated by comparing the difference between Tnow and one of the state variables
Tfirst or Tlast to a configured timeout threshold.

3965
3966

3967

3968
3969

3970

The finite state machine is illustrated by the following diagram:

Unknown

Glimpsed

Observed
LostTimeout is non-null and
(Tnow-Tlast) > LostTimeout

ObservedCountThreshold
is non-null and

TagCount >
ObservedCountThreshold

Or

ObservedTimeThreshold
 is non-null and
(Tnow-Tfirst) >

ObservedTimeThreshold

Tag Sighted

Tlast = Tnow

Tag Sighted

Tlast = Tnow
TagCount = TagCount + 1

Tag Sighted

Tfirst = Tlast = Tnow
TagCount = 0

GlimpsedTimeout is non-null and
(Tnow-Tlast) > GlimpsedTimeout

 Copyright © 2004–2009 EPCglobal®, All Rights Reserved.Page 188 of 229

The smoothing finite state machine is also specified by the following state table: 3971

3972
3973
3974
3975
3976
3977
3978

3979
3980
3981
3982

Table 100. Tag Smoothing State Transitions

The application of this smoothing state machine is that, at any point in time, a Reader
SHALL consider a Tag to be within view if the Tag is in the Observed state. If an ALE
implementation supports smoothing (that is, if an ALE implementation does not raise a
ValidationException when a client sets the properties defined below), then it
SHALL apply the above rule when the reader is used in an ECSpec, and MAY apply the
rule when the reader is used in a CCSpec.

State transitions in the smoothing state machine are based upon four parameters, which
an ALE client may set using the properties parameter of an LRSpec or the
setProperties method of the Logical Reader API, as specified in Section 10.3. An
ALE implementation SHALL interpret these parameters as follows:

State Event/Condition Action Next State

Unknown Tag Sighted Tfirst=Tlast=Tnow

TagCount=0

Glimpsed

Glimpsed Tag Sighted TagCount=TagCount+1

Tlast = Tnow

Glimpsed

Glimpsed GlimpsedTimeout is non-
null and (Tnow-Tlast) >
GlimpsedTimeout

-- Unknown

Glimpsed ObservedTimeThreshold is
non-null and (Tnow-Tfirst)
> ObservedTimeThreshold

-- Observed

Glimpsed ObservedCountThreshold
is non-null and TagCount >
ObservedCountThreshold

-- Observed

Observed Tag Sighted Tlast=Tnow Observed

Observed LostTimeout is non-null
and (Tnow-Tlast) >
LostTimeout

-- Unknown

 Copyright © 2004–2009 EPCglobal®, All Rights Reserved.Page 189 of 229

Property Name Description
GlimpsedTimeout A threshold, in milliseconds, that governs the

transition between the Glimpsed state and the
Unknown state. If a Tag is in the Glimpsed state and
is not seen for GlimpsedTimeout milliseconds or
more, it transitions to the Unknown state. Note that a
too-small value for GlimpsedTimeout, including a
zero value, will prevent a Tag from ever entering the
Observed state and therefore prevent any Tag from
being operated upon. If GlimpsedTimeout is null,
a Tag never transitions from the Glimpsed state to the
Unknown state.

ObservedTimeThreshold A threshold, in milliseconds, that governs the
transition between the Glimpsed state and the
Observed state. If a Tag has been in the Glimpsed
state for at least ObservedTimeThreshold, it
transitions to the Observed state. If
ObservedTimeThreshold is zero, a Tag
transitions immediately from the Glimpsed state to the
Observed state (that is, it enters the Observed state
directly from the Unknown state as soon as the
conditions for entering the Glimpsed state are met). If
ObservedTimeThreshold is null, elapsed time is
not used as a criteria for determining when a Tag
transitions to the Observed state.

ObservedCountThreshold A threshold that governs the transition between the
Glimpsed State and the Observed state. If a Tag has
been sighted at least ObservedCountThreshold
times while in the Glimpsed state, it transitions to the
Observed state. If ObservedCountThreshold is
zero, a Tag transitions immediately from the
Glimpsed state to the Observed state (that is, it enters
the Observed state directly from the Unknown state as
soon as the conditions for entering the Glimpsed state
are met). If ObservedCountThreshold is null,
TagCount is not used as a criteria for determining
when a Tag transitions to the Observed state.

 Copyright © 2004–2009 EPCglobal®, All Rights Reserved.Page 190 of 229

Property Name Description
LostTimeout A threshold, in milliseconds, that governs the

transition between the Observed state and the
Unknown state. If a Tag is in the Observed state and
has not been sighted for at least LostTimeout
milliseconds, it transitions to the Unknown state. Note
that a too-small value for LostTimeout, including a
zero value, will cause a Tag to transition immediately
to the Unknown state from the Observed state. In
those cases, however, the implementation SHALL
include the Tag in the operation of any active ECSpec
or CCSpec. If LostTimeout is null, a Tag never
transitions from the Observed state to the Unknown
state.

Table 101. Tag Smoothing Properties 3983
3984
3985

3986
3987

3989

3991

3993

3995
3996
3997

3999
4000
4001
4002
4003

4004
4005
4006
4007

Notwithstanding the foregoing, if all four properties are set to null for a given logical
reader an implementation SHALL NOT use smoothing for that logical reader.

The define, update, and setProperties methods of the Logical Reader API
SHALL raise a ValidationException under any of the following circumstances:

• If the value of any of the four properties specified above is a non-null string that is 3988
not parseable as a non-negative decimal integer numeral.

• If the value of any of the four properties specified above is non-null, and the 3990
implementation does not support Tag smoothing for the specified logical reader.

• If both ObservedTimeThreshold and ObservedCountThreshold are null, 3992
and any of the other smoothing parameters is non-null.

• If the implementation does not wish to support the combination of the four parameter 3994
values that would result from the operation. An implementation that supports
smoothing for the specified logical reader SHALL NOT, however, raise a
ValidationException for the case where all four parameters are set to null.

11 Access Control API 3998
This section defines an API through which administrative clients can control access by
ALE clients to ALE API features. This API provides a standardized, role-based way to
associate access control permissions with ALE client identities. The authentication of
client identities is binding-specific and outside the scope of this API. The specification
of the Access Control API follows the general rules given in Section 4.

The access control model provided by this API is as follows. Each client of the ALE API
is presumed to have an identity, authenticated by a binding-specific mechanism. A client
identity maps to one or more roles. A role maps to one or more permissions, each of
which describes access to a particular feature of the ALE API. The ALE client is

 Copyright © 2004–2009 EPCglobal®, All Rights Reserved.Page 191 of 229

permitted to do those things that are described by all of the permissions assigned to all of
the roles to which the client identity maps.

4008
4009

4010
4011
4012
4013
4014
4015
4016
4017
4018

4019
4020
4021
4022
4023
4024

4025
4026

4027
4028

4029
4030
4031
4032
4033

4034

Permissions are of two kinds. “Function” permissions grant the right to use a particular
method or methods of the ALE API. An example would be a permission that says
whether a client is permitted to use the define method. In general, if a client attempts
an operation that is denied by lack of the appropriate function permission, the operation
raises a SecurityException. The second kind of permission is a “data” permission,
which grants the right to use particular resources or data. An example would be a
permission that governs which logical readers a client may use. In general, lack of a data
permission does not raise a SecurityException, but instead merely limits the data
or resources visible through the API.

Permissions are described in the following manner. A “resource” is something within an
ALE implementation that a particular client may be granted permission to use. A
resource may be a particular API method, or some other resource an implementation
wishes to control access to. Each resource is described by a specific class/instance pair.
For example, access control for the ALE Writing API is governed by the
ALECC.subscribe instance within the APIMethod permission class.

This style of naming resources is extensible, by adding additional class or instance
names.

Permissions are described by granting access to specific resources. A client may access
only the resources for which at least one permission allows access.

The instance name “*” is a wildcard – it means “all instances, including those yet to
exist”. This is useful in cases where administrators need to grant a wide range of
permissions to a client. Because “*” is interpreted at the time of the permission check (as
opposed to the time of the grant), it accommodates future changes in the underlying
configuration.

ALE implementations MAY provide a set of default permissions and roles if they choose.

 Copyright © 2004–2009 EPCglobal®, All Rights Reserved.Page 192 of 229

11.1 API 4035
<<interface>> 4036

ALEAC 4037
--- 4038
getPermissionNames() : List<String> 4039
definePermission(permName : String, perm : ACPermission) : 4040
void 4041
updatePermission(permName : String, perm : ACPermission) : 4042
void 4043
getPermission(permName : String) : ACPermission 4044
undefinePermission(permName : String) : void 4045
 4046
getRoleNames() : List<String> 4047
defineRole(roleName : String, role : ACRole) : void 4048
updateRole(roleName : String, role : ACRole) : void 4049
getRole(roleName : String) : ACRole 4050
undefineRole(roleName : String) : void 4051
addPermissions(roleName : String, permissionNames : 4052
List<String>) : void 4053
setPermissions(roleName : String, permissionNames : 4054
List<String>) : void 4055
removePermissions(roleName : String, permissionNames : 4056
List<String>) : void 4057
 4058
getClientIdentityNames() : List<String> 4059
defineClientIdentity(identityName : String, id : 4060
ACClientIdentity) : void 4061
updateClientIdentity(identityName : String, id : 4062
ACClientIdentity) : void 4063
getClientIdentity(identityName : String) : ACClientIdentity 4064
getClientPermissionNames(identityName : String) : 4065
List<String> // (permission names) 4066
undefineClientIdentity(identityName : String) : void 4067
addRoles(identityName : String, roleNames : List<String>) : 4068
void 4069

 Copyright © 2004–2009 EPCglobal®, All Rights Reserved.Page 193 of 229

removeRoles(identityName : String, roleNames : 4070
List<String>) : void 4071
setRoles(identityName : String, roleNames : List<String>) : 4072
void 4073
 4074
getSupportedOperations() : List<String> 4075
getStandardVersion() : String 4076
getVendorVersion() : String 4077
<<extension point>> 4078

4079
4080

An ALE implementation SHALL implement the methods of the ALE Access Control
API as specified in the following table:

Method Description
getPermissionNames Returns an unordered list of the names of all

permissions.
definePermission Creates a new permission named permName

according to the specified perm.

updatePermission Changes the definition of the permission named
permName to match the specification in the perm
parameter. This is different than calling
undefinePermission followed by
definePermission, because
updatePermission may be called even if there
are defined roles that refer to this permission.

undefinePermission Removes the permission named permName.

getPermission Returns an ACPermission that describes the
permission named permName.

getRoleNames Returns an unordered list of the names of all roles.
defineRole Creates a new role named roleName according to

the specified role.

updateRole Changes the definition of the role named
roleName to match the specification in the role
parameter. This is different than calling
undefineRole followed by defineRole,
because updateRole may be called even if there
are defined client identities that refer to this role.

undefineRole Removes the role named roleName.

 Copyright © 2004–2009 EPCglobal®, All Rights Reserved.Page 194 of 229

Method Description
getRole Returns an ACRole that describes the role named

roleName.

addPermissions Adds the specified permissions to the list of
permissions for the role named roleName. This
is equivalent to calling getRole, modifying the
ACRole that is returned to include the specified
permissions in the list of permission names, and
then calling updateRole with the modified
ACRole.

setPermissions Changes the list of permissions for the role named
roleName to the specified list. This is equivalent
to calling getRole, modifying the ACRole that
is returned by replacing the permission list with the
specified list of permissions, and then calling
updateRole with the modified ACRole.

removePermissions Removes the specified permissions from the list of
permissions for the role named roleName. Any
permission name within perms that is not
currently among the permissions of the specified
role is ignored. This is equivalent to calling
getRole, modifying the ACRole that is returned
by removing any references to permissions in the
specified permission list, and then calling
updateRole with the modified ACRole.

getClientIdentityNames Returns an unordered list of the names of all client
identities.

defineClientIdentity Creates a new client identity named
identityName according to the specified
ClientIdentity.

updateClientIdentity Changes the definition of the client identity named
identityName to match the specification in the
ClientIdentity parameter. This is different
than calling undefineClientIdentity
followed by defineClientIdentity,
because updateClientIdentity may be
called even if there are defined client identities that
refer to this client identity.

undefineClientIdentity Removes the client identity named
identityName.

 Copyright © 2004–2009 EPCglobal®, All Rights Reserved.Page 195 of 229

Method Description
getClientIdentity Returns an ACClientIdentity that describes

the client identity named identityName.

addRoles Adds the specified roles to the list of roles for the
client identity named identityName. This is
equivalent to calling getClientIdentity,
modifying the ACClientIdentity that is
returned to include the specified roles in the list of
role names, and then calling
updateClientIdentity with the modified
ACClientIdentity.

setRoles Changes the list of roles for the client identity
named identityName to the specified list. This
is equivalent to calling getClientIdentity,
modifying the ACClientIdentity that is
returned by replacing the role list with the specified
list of roles, and then calling
updateClientIdentity with the modified
ACClientIdentity.

removeRoles Removes the specified roles from the list of roles
for the client identity named identityName.
Any role name within perms that is not currently
among the roles of the specified client identity is
ignored. This is equivalent to calling
getClientIdentity, modifying the
ACClientIdentity that is returned by
removing any references to roles in the specified
role list, and then calling
updateClientIdentity with the modified
ACClientIdentity.

getClientPermissionNames Returns an unordered list of all permission names
granted to the specified client identity. This is
equivalent to calling getRoles, then combining
the results of calling getPermissions for each
role listed in the result from getRoles.

getSupportedOperations Returns an unordered list of all methods within the
Access Control API that are implemented by the
implementation (that is, those methods that do not
raise UnsupportedOperationException).
See Section 11.8.

 Copyright © 2004–2009 EPCglobal®, All Rights Reserved.Page 196 of 229

Method Description
getStandardVersion Returns a string that identifies what version of the

specification this implementation of the ALE
Access Control API complies with, as specified in
Section 4.3.

getVendorVersion Returns a string that identifies what vendor
extensions of the ALE Access Control API this
implementation provides, as specified in
Section 4.3.

Table 102. ALEAC Interface Methods 4081

4083
4084
4085
4086

11.2 Error Conditions 4082
Methods of the Access Control API signal error conditions to the client by means of
exceptions. The following exceptions are defined. All the exception types in the
following table are extensions of a common ALEException base type, which contains
one string element giving the reason for the exception.

Exception Name Meaning
SecurityException The operation was not permitted due

to an access control violation or other
security concern. The
implementation SHALL raise this
exception if the client was not granted
access rights to the called method.
Other, implementation-specific
circumstances may cause this
exception; these are outside the scope
of this specification.

NoSuchPermissionException The specified permission name
doesn’t exist.

PermissionValidationException The specified permission is invalid
according to Section 11.6, or for the
definePermission method the
specified permissionName is an
empty string or is not accepted by the
implementation according to Section
4.5.

DuplicatePermissionException There already exists a permission
having the specified name.

NoSuchRoleException The specified role name doesn’t exist.

 Copyright © 2004–2009 EPCglobal®, All Rights Reserved.Page 197 of 229

Exception Name Meaning
RoleValidationException The specified role is invalid

according to Section 11.5, or for the
defineRole method the specified
roleName is an empty string or is
not accepted by the implementation
according to Section 4.5.

DuplicateRoleException There already exists a role having the
specified name.

NoSuchClientIdentityException The specified client identity name
doesn’t exist.

ClientIdentityValidationException The specified client identity is invalid
according to Section 11.3, or for the
defineClientIdentity method
the specified
clientIdentityName is an
empty string or is not accepted by the
implementation according to Section
4.5.

DuplicateClientIdentityException There already exists a client identity
having the specified name.

UnsupportedOperationException The implementation does not provide
this method. See Section 11.8.

ImplementationException A generic exception raised by the
implementation for reasons that are
implementation-specific. This
exception contains one additional
element: a severity member
whose values are either ERROR or
SEVERE. ERROR indicates that the
ALE implementation is left in the
same state it had before the operation
was attempted. SEVERE indicates
that the ALE implementation is left in
an indeterminate state.

Table 103. Exceptions in the ALEAC Interface 4087
4088
4089
4090
4091
4092

The exceptions that may be raised by each Access Control API method are indicated in
the table below. An ALE implementation SHALL raise the appropriate exception listed
below when the corresponding condition described above occurs. If more than one
exception condition applies to a given method call, the ALE implementation may raise
any of the exceptions that applies.

 Copyright © 2004–2009 EPCglobal®, All Rights Reserved.Page 198 of 229

ALE Method Exceptions
getPermissionNames UnsupportedOperationException

SecurityException
ImplementationException

definePermission SecurityException
DuplicatePermissionException
PermissionValidationException
UnsupportedOperationException
ImplementationException

updatePermission NoSuchPermissionException
PermissionValidationException
UnsupportedOperationException
SecurityException
ImplementationException

getPermission SecurityException
NoSuchPermissionException
UnsupportedOperationException
ImplementationException

undefinePermission SecurityException
NoSuchPermissionException
UnsupportedOperationException
ImplementationException

getRoleNames SecurityException
UnsupportedOperationException
ImplementationException

defineRole SecurityException
DuplicateRoleException
RoleValidationException
UnsupportedOperationException
ImplementationException

updateRole NoSuchRoleException
RoleValidationException
UnsupportedOperationException
SecurityException
ImplementationException

getRole SecurityException
NoSuchRoleException
UnsupportedOperationException
ImplementationException

 Copyright © 2004–2009 EPCglobal®, All Rights Reserved.Page 199 of 229

ALE Method Exceptions
undefineRole SecurityException

NoSuchRoleException
UnsupportedOperationException
ImplementationException

addPermissions SecurityException
NoSuchRoleException
NoSuchPermissionException
UnsupportedOperationException
ImplementationException

setPermissions SecurityException
NoSuchRoleException
NoSuchPermissionException
UnsupportedOperationException
ImplementationException

removePermissions SecurityException
NoSuchRoleException
UnsupportedOperationException
ImplementationException

getClientIdentityNames UnsupportedOperationException
SecurityException
ImplementationException

defineClientIdentity SecurityException
DuplicateClientIdentityException
ClientIdentityValidationException
UnsupportedOperationException
ImplementationException

updateClientIdentity SecurityException
NoSuchClientIdentityException
ClientIdentityValidationException
UnsupportedOperationException
ImplementationException

getClientIdentity SecurityException
NoSuchClientIdentityException
UnsupportedOperationException
ImplementationException

getClientPermissionNames SecurityException
NoSuchClientIdentityException
UnsupportedOperationException
ImplementationException

 Copyright © 2004–2009 EPCglobal®, All Rights Reserved.Page 200 of 229

ALE Method Exceptions
undefineClientIdentity SecurityException

NoSuchClientIdentityException
UnsupportedOperationException
ImplementationException

addRoles SecurityException
NoSuchClientIdentityException
NoSuchRoleException
UnsupportedOperationException
ImplementationException

removeRoles SecurityException
NoSuchClientIdentityException
UnsupportedOperationException
ImplementationException

setRoles SecurityException
NoSuchClientIdentityException
NoSuchRoleException
UnsupportedOperationException
ImplementationException

getSupportedOperations ImplementationException

getStandardVersion ImplementationException

getVendorVersion ImplementationException

Table 104. Exceptions Raised by each ALEAC Interface Method 4093

4095
11.3 ACClientIdentity 4094
An ACClientIdentity identifies a client that may access the ALE API.

ACClientIdentity 4096
credentials : List<ACClientCredential> 4097
roleNames : List<String> // list of role names 4098
<<extension point>> 4099

--- 4100

4101
4102

The ALE implementation SHALL interpret the fields of an ACClientIdentity as
follows.

 Copyright © 2004–2009 EPCglobal®, All Rights Reserved.Page 201 of 229

Field Type Description
credentials List<ACClientCredential> An unordered list of zero or

more credentials that the
implementation may use to
authenticate the identity of this
client.

roleNames List<String> An unordered list of the names
of zero or more roles that are
assigned to this client identity.

Table 105. ACClientIdentity Fields 4103

4104
4105
4106

4108

4110

4112
4113
4114
4115

The defineClientIdentity, and updateClientIdentity methods of the
Access Control API SHALL raise a ClientIdentityValidationException
under any of the following circumstances:

• One or more of the specified credentials is not a valid credential, according to 4107
the implementation-specific rules for validating credentials.

• One or more of the specified roleNames is not a known name for a role. 4109

11.4 ACClientCredential 4111
An ACClientCredential is information that the ALE implementation uses to
authenticate the identity of an API client. The contents of a credential and how it is used
in the authentication process is implementation specific, and hence this type is defined as
purely an extension point.

ACClientCredential 4116
<<extension point>> 4117
--- 4118

4120
11.5 ACRole 4119
An ACRole describes a role that may be assigned to a client identity.

ACRole 4121
permissionNames : List<String> // of permission names 4122
<<extension point>> 4123
--- 4124

4125 The ALE implementation SHALL interpret the fields of an ACRole as follows.

Field Type Description

 Copyright © 2004–2009 EPCglobal®, All Rights Reserved.Page 202 of 229

Field Type Description
permissionNames List<String> An unordered list of the names of zero or

more permissions that are granted to all
client identities to which this role is
assigned.

Table 106. ACRole Fields 4126

4127
4128

4130

4132
4133

The defineRole, and updateRole methods of the Access Control API SHALL
raise a RoleValidationException under any of the following circumstances:

• One or more of the specified permissionNames is not a known name for a 4129
permission.

11.6 ACPermission 4131
An ACPermission describes one or more specific permissions that may be associated
with a role and thereby granted to client identities.

ACPermission 4134
permissionClass : ACClass 4135
instances : List<String> 4136
<<extension point>> 4137
--- 4138

4139 The ALE implementation SHALL interpret the fields of an ACPermission as follows.

Field Type Description
permissionClass ACClass The permission class within which the

names in instances are to be interpreted.
See Section 11.7.

instances List<String> An unordered list of one or more instances
of the specified permission class. This
permission grants permission to use all of
the instances within the specified class that
are specified in this list. See Section 11.7.

Table 107. ACPermission Fields 4140

4141
4142
4143

4146

The definePermission, and updatePermission methods of the Access Control
API SHALL raise a PermissionValidationException under any of the
following circumstances:

• The specified permissionClass is not a known permission class. 4144

• One or more of the specified instances is not a valid instance string for the 4145
specified permission class, according to the table in Section 11.7.

 Copyright © 2004–2009 EPCglobal®, All Rights Reserved.Page 203 of 229

11.7 Access Permission Classes (ACClass) 4147
An ACClass is an extensible, enumerated type denoting a permission class. 4148

<<Enumerated Type>> 4149
ACClass 4150

Method 4151
<<extension point>> 4152

4153
4154

An ALE implementation SHALL recognize the following permission class names, and
implement each according to the following table.

Permission
Class

Description Valid Instances

Method Each instance specifies an API method or
a set of API methods to which permission
is granted. If a client has not been
granted permission for a given method, if
that client calls the method the ALE
implementation SHALL raise a
SecurityException. However, an
ALE implementation SHALL NOT raise
a SecurityException for a method
whose specification does not include
SecurityException as a possible
error condition, regardless of permission
settings. This includes the
getStandardVersion and
getVendorVersion methods of all
ALE APIs, and the
getSupportedOperations method
of the Access Control API.

The name of a specific
method, an API name, or
the asterisk character (*).
Specifying the name of an
API grants permission to all
methods of the API,
including any vendor
extension methods.
Specifying the asterisk
character grants permission
to all methods of all APIs.
See Section 11.7.1.

Table 108. ACClass Values 4155

4157
4158
4159
4160
4161

11.7.1 Instance Names for the Method Class 4156
An instance for the Method permission class is either the name of a specific method, the
name of an API, or a wildcard (*). An ALE implementation SHALL recognize the
following strings as API names when they appear as instances for the Method
permission class, denoting that permission is granted to use all methods of the specified
API, including vendor extensions.

Instance Name Description
ALE ALE Reading API

 Copyright © 2004–2009 EPCglobal®, All Rights Reserved.Page 204 of 229

Instance Name Description
ALECC ALE Writing API
ALETM ALE Tag Memory API
ALELR ALE Logical Reader API
ALEAC ALE Access Control API

Table 109. Method Permission Class Instance Names for APIs 4162

4163
4164
4165
4166
4167

4168
4169
4170

4172
4173
4174
4175
4176
4177
4178
4179
4180
4181

4182
4183
4184
4185
4186
4187
4188
4189
4190
4191
4192
4193
4194
4195

A specific method is indicated by an instance name consisting of an API name as defined
above, a period (.), and the name of a method within that API. An ALE implementation
SHALL recognize a string of that form as a method name when it appears as an instance
for the Method permission class. For example, the string ALECC.subscribe denotes
the subscribe method of the ALE Writing API.

An ALE implementation SHALL recognize the string consisting of a single asterisk
character (*) as denoting all methods of all APIs when it appears as an instance for the
Method permission class.

11.8 Partial Implementations 4171
An implementation of the Access Control API SHALL implement all methods as
specified in Section 11.1. Unlike other ALE APIs, however, the Access Control API
specifies facilities that may overlap or conflict with facilities provided by the
environment in which other ALE APIs are provided. For example, it is common in large
enterprises to centralize information about identities, roles, and permissions in
repositories such as LDAP servers, so that this information may be shared across many
different applications. In such a setting, it may not be appropriate for the system
component including an ALE implementation to provide its own API for manipulating
client identities and permissions, but instead defer to the mechanisms provided by the
LDAP environment.

For this reason, most methods of the Access Control API can raise an
UnsupportedOperationException. An ALE implementation MAY raise
UnsupportedOperationException from an Access Control API rather than
carrying out the normal function of the method, if the implementation does not wish to
provide that feature through the ALE Access Control API. If an implementation raises
UnsupportedOperationException from any Access Control API method, it
SHALL provide documentation that specifies how the client or user controls components
of the access control model – client identities, roles, and permissions – for which Access
Control API methods raise the UnsupportedOperationException. For example,
an implementation may specify that client identities, identity-to-role mappings, and role-
to-permission mappings are obtained from an external LDAP server, and that permissions
are defined and manipulated using Access Control API. In that example, all of the
methods concerned with defining and manipulating client identities and roles might raise
UnsupportedOperationException.

 Copyright © 2004–2009 EPCglobal®, All Rights Reserved.Page 205 of 229

Explanation (non-normative): It is common in large enterprises to centralize information 4196
about identities, roles, and permissions in repositories such as LDAP servers, so that this 4197
information may be shared across many different applications. The provisions of this 4198
section are specifically intended to allow ALE implementations to work in such an 4199
environment. In addition, the reason that permission names are introduced in the API is 4200
so that client-to-role and role-to-permission mappings may be stored externally in a way 4201
that only requires storing strings, as opposed to more complex objects, in the external 4202
repository. At the same time, there may also be ALE implementations that wish to 4203
provide a fully-featured access control system that is self-contained, that is, that does not 4204
require an external repository. The Access Control API includes a full set of methods for 4205
manipulating client identities, roles, and permissions so that self-contained access 4206
control implementations will have a standardized interface. 4207

4208
4209
4210
4211
4212
4213

4215

4217

4218

4219

4220
4221

4222

4224

4225

4226

4227

4228
4229

4231

4232

4233

In order to insure that implementations provide a reasonable set of facilities to clients, an
ALE implementation SHALL conform to the following rules for selecting which methods
raise UnsupportedOperationException. In these rules, to “support” a method
means to implement the method according to the preceding sections, and never to raise
UnsupportedOperationException. Conversely, to not support a method means
to always raise UnsupportedOperationException.

1. An implementation SHALL always support getStandardVersion, 4214
getVendorVersion, and getSupportedOperations.

2. For methods related to permissions, an implementation SHALL choose one of the 4216
following four alternatives:

2.1. No methods supported.

2.2. Support only getPermissionNames.

2.3. Support getPermissionNames, definePermission,
undefinePermission, and getPermission.

2.4. Support all of the methods in 2.3, plus updatePermission.

3. For methods related to roles, an implementation SHALL choose one of the following 4223
four alternatives:

3.1. No methods supported.

3.2. Support only getRoleNames.

3.3. Support getRoleNames, defineRole, undefineRole, and getRole.

3.4. Support all of the methods in 3.3, plus updateRole, addPermissions,
setPermissions, and removePermissions.

4. For methods related to client identities, an implementation SHALL choose one of the 4230
following four alternatives:

4.1. No methods supported.

4.2. Support only getClientIdentityNames.

 Copyright © 2004–2009 EPCglobal®, All Rights Reserved.Page 206 of 229

4.3. Support getClientIdentityNames, defineClientIdentity,
undefineClientIdentity, and getClientIdentity.

4234
4235

4236
4237

4239

4240
4241
4242
4243
4244

4246
4247
4248
4249
4250
4251
4252
4253
4254
4255

4257
4258
4259
4260

4.4. Support all of the methods in 4.3, plus updateClientIdentity,
addRoles, setRoles, and removeRoles.

5. If an implementation supports getClientIdentity and getRole, it SHALL 4238
also support getClientPermissionNames.

The getSupportedOperations method is provided so that clients may easily
determine which methods are supported and which are not. As a consequence of the
above rules, the list returned by getSupportedOperations SHALL always include
the strings getStandardVersion, getVendorVersion, and
getSupportedOperations (and possibly others).

11.9 Anonymous User 4245
An implementation MAY allow clients to access one or more ALE APIs without
authenticating the client identity, either by using a binding that does not support
authentication or by omitting the authentication step in a binding that does. If an
implementation does provide unauthenticated access, the implementation SHOULD
provide a special “anonymous” client identity that can be used to control the access rights
of an unauthenticated client. For example, an implementation may use the special string
“<anonymous>” to denote the anonymous client identity, and then unauthenticated
clients will be granted access according to what roles and permissions are assigned to
client identity <anonymous>. An implementation SHALL provide documentation to
specify whether an anonymous client identity is provided, and if so what its name is.

11.10 Initial State 4256
In order to grant access to ordinary clients, there must exist at least one client who has
permission to use the Access Control API, or there must be some out-of-band mechanism
for establishing access permissions. An implementation SHALL provide documentation
that specifies how this is done.

Example (non-normative): If an ALE implementation’s sole means to configure access 4261
permissions is through the ALE Access Control API, then the implementation might 4262
provide an initial “superuser” client identity that is initially granted permission for 4263
everything. The client identity name and credentials for this initial “superuser” might be 4264
configurable at product installation time, or might be a fixed string and password. If an 4265
ALE implementation uses an external source of client identities as described in 4266
Section 11.8, then it may be sufficient simply to rely on whatever means that external 4267
system provides for configuring resources. 4268

4270
4271

12 Use Cases (non-normative) 4269
This section provides a non-normative illustration of how the ALE interface is used in
various application scenarios for the Reading API and the Writing API.

 Copyright © 2004–2009 EPCglobal®, All Rights Reserved.Page 207 of 229

12.1 Reading API Use Cases 4272
1. For shipment and receipt verification, applications will request the number of 4273

Logistic Units such as Pallets and Cases moving through a portal, totaled by Pallet
and Case GTIN across all serial numbers. Object types other than Pallet and Case
should be filtered out of the reading.

4274
4275
4276

4278
4279
4280
4281
4282
4283

4285
4286
4287
4288
4289
4290
4291
4292
4293
4294

4296
4297
4298
4299
4300
4301
4302
4303

4305
4306

4308
4309
4310
4311

4312

2. For retail OOS management, applications will request one of 2 things: 4277

a. The number of Items that were added to or removed from the shelf since the
last event cycle, totaled by Item GTIN across all serial numbers. Object types
other than Item should be filtered out of the reading; or

b. The total number of Items on the shelf during the current event cycle, totaled
by GTIN across all serial numbers. Object types other than Item should be
filtered out of the reading.

3. For retail checkout, applications will request the full EPC of Items that move 4284
through the checkout zone. Object types other than Item should be filtered out. In
order to prevent charging for Items that aren’t for sale (e.g., Items the consumer or
checkout clerk brought into the store that inadvertently happen to be read), something
in the architecture needs to make sure such Items are not read or filter them out.
Prevention might be achievable with proper portal design and the ability for the
checkout clerk to override errant reads. Alternatively, the ALE implementation could
filter errant reads via access to a list of Items (down to the serial number) that are
qualified for sale in that store (this could be hundreds of thousands to millions of
items), or the POS application itself could do it. With the list options, the requesting
application would be responsible for maintaining the list.

4. For retail front door theft detection, applications will request the full EPC of any 4295
Item that passes through the security point portal and that has not be marked as sold
by the store and perhaps that meet certain theft detection criteria established by the
store, such as item value. Like the retail checkout use case, the assumption is that the
ALE implementation will have access to a list of store Items (to the serial number
level) that have not been sold and that meet the stores theft alert conditions. The
requesting application will be responsible for maintaining the list, and will decide
what action, if any, should be taken based on variables such as the value and quantity
of Items reported.

5. For retail shelf theft detection, applications will request the number of Items that 4304
were removed from the shelf since the last event cycle, totaled by Item GTIN across
all serial numbers. Object types other than Item should be filtered out.

6. For warehouse management, a relatively complex range of operations and thus 4307
requirements will exist. For illustration at this stage, one of the requirements is that
the application will request the EPC of the slot location into which a forklift operator
has placed a Pallet of products. Object types other than “slot” should be filtered out
of the reading.

The table below summarizes the ALE API settings used in each of these use cases.

 Copyright © 2004–2009 EPCglobal®, All Rights Reserved.Page 208 of 229

Use Case Event Cycle
Boundaries

Report Settings

Result
Set R

Filter F(R) Report Type

1 (ship/rcpt) Triggered by
pallet entering
and leaving
portal

Complete Pallet &
Case

Group cardinality,
G = pallet/case GTIN

2a (retail OOS) Periodic Additions
&
Deletions

Item Group cardinality,
G = item GTIN

2b (retail OOS) Periodic Complete Item Group cardinality,
G = item GTIN

3 (retail ckout) Single Complete Item Membership (EPC)

4 (door theft) Triggered by
object(s)
entering and
leaving portal

Complete None Membership (EPC)

5 (shelf theft) Periodic Deletions Item Group cardinality,
G = item GTIN

6 (forklift) Single Complete Slot Membership (EPC)

Table 110. Summary of ALE Interface Use Cases 4313

4316
4317
4318
4319

4320
4321
4322
4323

4325
4326
4327
4328
4329

4330
4331

12.2 Writing API Use Cases 4314
1. A high speed conveyor carries cases of a product, where each case contains a 4315

dozen innerpacks. Both the cases and the innerpacks contain tags whose EPC
memory is already programmed in a way that the case and innerpacks can be
distinguished (e.g., through the “filter” bits). As each case passes a reader, the ALE
implementation is to write a lot code into the user memory of the innerpacks only.

The above use case explores the need to have write command be applied selectively
to tags based on filtering. The high speed aspect is intended to illustrate the need to
give an implementation the freedom to carry out the intent within a single or a small
number of Gen2 “inventory rounds”.

2. A high speed conveyor carries cases of a product, where each case contains 24 4324
items of identical product. The case has a tag that has been pre-programmed with
an SGTIN derived from a known GTIN. Each item carries a tag whose EPC memory
is not yet written. As each case passes a reader, the ALE implementation is to assign
24 unique EPCs based on the GTIN and ensure each item has a unique EPC written to
its tag.

The above use case explores the need to assign EPCs when many tags are within view
of the reader, and without tag-by-tag intervention of the ALE client.

 Copyright © 2004–2009 EPCglobal®, All Rights Reserved.Page 209 of 229

3. Same as the prior use case, but a unique kill password is also to be assigned to 4332
each item. 4333

4334
4335

4337
4338
4339

4340
4341

4342

The above use case explores the need to assign unique kill passwords, perhaps based
on generating random numbers, without tag-by-tag intervention of the ALE client.

4. At a retail checkout location, the ALE implementation is to kill all tags (or a 4336
designated subset of tags) within view of a designated set of readers. Each tag has a
distinct kill password, and the mapping of EPCs to kill passwords for all items that
might arrive at checkout is known in advance.

This use case explores the need to do associative lookup to determine kill passwords
to use.

The table below summarizes the ALE API settings used in each of these use cases.

Writing
API Use

Case

Command
Cycle

Boundaries

Command Spec Report
Content Filter Operation Spec(s)

Op
Type

Field
Spec

Data
Spec

1. High
Speed
Conveyor
writing lot
code to
inner packs.

Triggered
by case
entering and
leaving the
reader
tunnel

INCLUDE
Inner
packs
(based on
its “filter”
bits)

WRITE Lot
field

LITERAL
with the
specified
lot code

A list of 12
CCTagReport
instances, one
for each inner
pack. Fewer
than 12
indicates a
problem.

2. High
Speed
Conveyor
writing
EPCs

Triggered
by case
entering and
leaving read
tunnel

EXCLUDE
Case
(based on
its SGTIN
or SGTIN
pattern for
its GTIN)

WRITE EPC
field

CACHE
with the
specified
EPC
cache

A list of 24
CCTagReport
instances,
each giving
the specific
EPC value
written for
one item

3.
Assignment
of Kill
Password

Triggered
by case
entering and
leaving read

EXCLUDE
Case
(based on
its SGTIN
or SGTIN

WRITE EPC
field

CACHE
with
specified
EPC
cache

A list of 24
CCTagReport
instances,
each giving
the specific

 Copyright © 2004–2009 EPCglobal®, All Rights Reserved.Page 210 of 229

Writing
API Use

Case

Command
Cycle

Boundaries

Command Spec Report
Content Filter Operation Spec(s)

Op
Type

Field
Spec

Data
Spec

tunnel pattern for
its GTIN)

WRITE KillPwd RANDOM EPC value
and
corresponding
kill password
written for
one item

4. Kill tags
at Retail
Checkout

Triggered
by item
entering kill
zone, or by
manual
signal from
checkout
clerk

Specific
items
checked
out

KILL ASSO-
CIATION
with a
table
mapping
EPCs to
kill
passwords

A list of
CCTagReport
instances for
each item,
indicating
successful
kill. The
number of
instances can
be compared
to the number
of items
checked out to
detect
problems.

Table 111. Summary of ALECC Interface Use Cases 4343

4345
4346
4347

4349
4350
4351
4352
4353
4354

13 ALE Scenarios (non-normative) 4344
This section provides a non-normative illustration of the API-level interactions between
the ALE interface and the ALE client and other actors. The illustration is based on the
Reading API, but the API-level interaction patterns are identical for the Writing API.

13.1 ALE Context 4348
An ALE implementation exists in a context including RFID readers or other devices,
Users (administrative) and Client applications as shown below. Initially the
administrators are responsible for installing and configuring the environment. Once the
environment is configured, Tag data are sent from the Readers to the ALE
implementation. In some cases the ALE implementation may be embedded in a reader
device, but for clarity the illustrations below show the Reader as a separate component

 Copyright © 2004–2009 EPCglobal®, All Rights Reserved.Page 211 of 229

4355
4356

4357
4358
4359
4360

4365
4366

4368
4369
4370

4372

The ALE clients are applications or services that interact with the ALE implementation.
Several methods are defined within the ALE interface which allow clients to specify the
data they wish to receive and the conditions for the production of the reports containing
the data. These methods are:

• define, undefine 4361

• subscribe, unsubscribe 4362

• poll 4363

• immediate 4364

These methods are defined normatively for the Reading API in Section 8.1. The Writing
API has corresponding methods, defined normatively in Section 9.1.

13.2 Interaction Scenarios 4367
Three sequence diagrams are illustrated below to demonstrate the use of the ALE
Reading or Writing API. The three sequence diagrams correspond to three ways a client
may cause event cycles or command cycles to occur:

1. Subscribing to a previously defined ECSpec (or CCSpec) in order to receive 4371
asynchronous notifications via the callback interface.

 Copyright © 2004–2009 EPCglobal®, All Rights Reserved.Page 212 of 229

2. Polling a previously defined ECSpec or CCSpec in order to receive a synchronous 4373
result. 4374

4376

4377
4378
4379
4380
4381
4382
4383
4384
4385
4386
4387

4389
4390

4391

13.2.1.1 4392

3. Using the immediate method to present a single-use ECSpec or CCSpec in order to 4375
receive a synchronous result.

In each of the sequence diagrams below, interactions between the ALE Implementation
and a Reader are depicted. The ALE specification is purposefully silent on how a Reader
communicates with an ALE Implementation and does not favor any mechanism in
particular. Likewise the specification is purposefully silent on how an ALE
Implementation and a Reader coordinate with each other. Therefore, the diagrams
generically show the Reader / ALE Implementation interaction as a single arrow from
Reader to ALE Implementation labeled “data(EPC).” This is not meant to suggest that
the Reader / ALE Implementation interaction is always a “push” of data from Reader to
ALE Implementation, nor that an ALE Implementation must have a method called
“data.” The “data(EPC)” arrow is merely a placeholder for whatever implementation-
specific mechanism is used.

13.2.1 Subscribing for Asynchronous Notifications 4388
This scenario illustrates the interaction between different entities in the context of a
subscription for aynchronous notification of reports.

Assumptions
• All configuration, and initialization required has already been performed. 4393

• The ALE Implementation implements ALE API. 4394

• The ALE Client is the only subscriber 4395

ALE Client ALE Implementation

define(SpecName, Spec)

subscribe(SpecName, NotifyURI)

Event Cycle 1

Event Cycle 2

Event Cycle 3

Event Cycle 4

data(EPC)
ECReport

unsubscribe(SpecName,NotifyURI)

undefine(SpecName)

Callback Receiver Reader

 Copyright © 2004–2009 EPCglobal®, All Rights Reserved.Page 213 of 229

• No filtering is performed by ECSpecs. 4396

• No tag smoothing is being performed. 4397

• The Callback Receiver receives reports at NotifyURI. 4398

• The interaction of the Reader with the ALE Implementation is indicated by the 4399
“data(EPC)” arrow, as explained earlier. 4400

13.2.1.2 4402

4404
4405
4406
4407
4408

4410
4411
4412
4413
4414

4416

4418

4420

4422

4424
4425

4427

4429
4430

• This is a normal scenario involving no errors. 4401

Description
1. The ALE Client calls the define method of the ALE interface. The ECSpec 4403

specifies a repeat period of zero (implying that an event cycle begins as soon as the
previous one ends), and a duration of five seconds. The ECSpec includes a single
ECReportSpec wherein the reportSet is set to ADDITIONS, and
reportIfEmpty is set to false. At this point the ECSpec is considered
“Unrequested.”

2. The client calls the subscribe method, including a URI that identifies the Callback 4409
Receiver as the destination for the ECReports. In this scenario, the callback
receiver is shown as a separate entity receiving ECReports. In some instances, the
client could be the callback receiver. At this point the ECSpec is considered
“Requested.” Since the start condition is given by repeatPeriod, the ECSpec
immediately transitions to the “Active” state.

3. During Event Cycle 1 no new tags (additions) were reported by the Reader so no 4415
ECReports is generated.

4. In Event Cycle 2, an EPC is reported to the ALE Implemetnation by one of the 4417
Readers indicated in the ECSpec.

5. At the end of event Cycle 2, an ECReports instance is generated and sent to the 4419
client.

6. In Event Cycle 3, no EPCs are reported by the Reader, and no ECReports are 4421
generated.

7. In Event Cycle 4 the client calls the unsubscribe method of the ALE interface. 4423
As this removes the only subscriber, the ECSpec transitions to the “Unrequested”
state, and no further reads are performed nor ECReports generated.

8. Finally, the ALE Client calls undefine method of ALE interface to remove the 4426
ECSpec from the ALE Implementation.

13.2.2 Polling for Synchronous Results 4428
This scenario illustrates the interaction between different entities in the context of a
polling request.

 Copyright © 2004–2009 EPCglobal®, All Rights Reserved.Page 214 of 229

 4431

13.2.2.1 4432

4439

13.2.2.2 4441

4443
4444
4445
4446
4447

4449
4450
4451
4452

Assumptions
• All configuration, and initialization required have already been performed. 4433

• The ALE Implementation implements ALE API. 4434

• The ALE Client is the only client requesting reports from the server. 4435

• No filtering is performed by ECSpecs. 4436

• No tag smoothing is being performed. 4437

• The interaction of the Reader with the ALE Implementation is indicated by the 4438
“data(EPC)” arrow, as explained earlier.

• This is a normal scenario involving no errors. 4440

Description
1. The ALE Client calls the define method of the ALE interface. The ECSpec 4442

specifies a repeat period of zero (implying that one event cycle begins as soon as the
previous one ends), and a duration of five seconds. The ECSpec includes a single
ECReportSpec wherein the reportSet is set to ADDITIONS, and
reportIfEmpty is set to false. At this point the ECSpec is considered
“Unrequested.”

2. The ALE Client calls the poll method of the ALE interface, naming the ECSpec 4448
previously defined in Step 1. At this point the ECSpec is transitioned to the
“Active” state, and the event cycle begins for the duration specified in the ECSpec.
During the duration of the event cycle the ALE Client is blocked waiting for a
response to the poll method.

ALE Client ALE Implementation Reader

define(SpecName, Spec)

data(EPC)

ECReport

poll (SpecName)

data(EPC)

poll(SpecName)

ECReport

 Copyright © 2004–2009 EPCglobal®, All Rights Reserved.Page 215 of 229

3. An EPC is received during the event cycle. At the end of the event cycle, the 4453
ECReports is generated and returned to the ALE Client as the response to the
poll method. At this point the ECSpec transitions to the “Unrequested” state.

4454
4455

4457

4459
4460

4462
4463
4464

4465

13.2.3.1 4466

4473

13.2.3.2 4475

4477
4478

4. An EPC that meets the filter conditions of the ECSpec is reported to the ALE layer, 4456
but since there is no “Active” ECSpec, this EPC will be ignored.

5. The ALE Client invokes the poll method of the ALE interface a second time. This 4458
is similar to the process described above in Steps 2 and 3, but since no EPC is
received, an empty ECReports instance is returned.

13.2.3 Defining a Single-Use Spec and Receiving a 4461
Synchronous Report

This scenario illustrates the interaction between different entities in the context of an
immediate request.

Assumptions
• All configuration, and initialization required has already been performed. 4467

• The ALE Implementation implements ALE API. 4468

• The ALE Client is the only client requesting reports from the server. 4469

• No filtering is performed by ECSpecs. 4470

• No tag smoothing is being performed. 4471

• The interaction of the Reader with the ALE Implementation is indicated by the 4472
“data(EPC)” arrow, as explained earlier.

• This is a normal scenario involving no errors. 4474

Description
1. The ALE Client calls the immediate method of the ALE interface. The ECSpec 4476

specifies a repeat period of zero (implying that one event cycle begins as soon as the
previous one ends), and a duration of five seconds. The ECSpec includes a single

ALE Client ALE Implementation Reader

immediate(Spec)
data(EPC)

ECReport

data(EPC)

 Copyright © 2004–2009 EPCglobal®, All Rights Reserved.Page 216 of 229

ECReportSpec wherein the reportSet is set to ADDITIONS, and
reportIfEmpty is set to false. The spec immediately transitions into “Active”
state, and the event cycle begins for the duration specified in the ECSpec. During the
duration of the event cycle the ALE Client is blocked waiting for a response to the
immediate method.

4479
4480
4481
4482
4483

4485
4486
4487

4489
4490
4491
4492
4493
4494

4495
4496
4497

4498
4499
4500
4501
4502
4503
4504
4505
4506
4507

4508
4509
4510
4511

2. An EPC is received during the event cycle. At the end of the event cycle, the 4484
ECReports is generated and returned to the ALE Client as the response to the
immediate method. At this point the ECSpec is removed from the ALE
Implementation.

14 Appendix: EPC Patterns (non-normative) 4488
EPC Patterns are used to specify filters within ECFilterSpec and CCFilterSpec
instances. The normative specification of EPC Patterns may be found in the EPCglobal
Tag Data Specification Version 1.3 [TDS1.3.1]. The remainder of this section provides a
non-normative summary of some of the features of that specification, to aid the reader
who has not read the EPCglobal Tag Data Specification in understanding the filtering
aspects of the ALE API.

An EPC pattern is a URI-formatted string that denotes a single EPC or set of EPCs. The
general format is:
urn:epc:pat:TagFormat:Filter.Company.Item.Serial

where TagFormat denotes one of the tag formats defined by the Tag Data
Specification, and the four fields Filter, Company, Item, and SerialNumber
correspond to data fields of the EPC. The meaning and number of these fields, as well as
their formal names, varies according to what TagFormat is named. In an EPC pattern,
each of the data fields may be (a) a decimal integer, meaning that a matching EPC must
have that specific value in the corresponding field; (b) an asterisk (*), meaning that a
matching EPC may have any value in that field; or (c) a range denoted like [lo-hi],
meaning that a matching EPC must have a value between the decimal integers lo and
hi, inclusive. Depending on the tag format, there may be other restrictions; see the
EPCglobal Tag Data Specification for full details.

Here are some examples. In these examples, assume that all tags are of the GID-96
format (which lacks the Filter data field), and that 20 is the General Manager Number
(Company field) for XYZ Corporation, and 300 is the Object Class (Item field) for its
UltraWidget product.
urn:epc:pat:gid-96:20.300.4000 Matches the EPC for UltraWidget serial

number 4000.
urn:epc:pat:gid-96:20.300.* Matches any UltraWidget’s EPC,

regardless of serial number.

 Copyright © 2004–2009 EPCglobal®, All Rights Reserved.Page 217 of 229

urn:epc:pat:gid-96:20.*.[5000-9999] Matches any XYZ Corporation product
whose serial number is between 5000 and
9999, inclusive.

urn:epc:pat:gid-96:*.*.* Matches any GID-96 tag

Table 112. EPC Pattern Examples 4512

4514
4515
4516

15 Glossary (non-normative) 4513
This section provides a non-normative summary of terms used within this specification.
For normative definitions of these terms, please consult the relevant sections of the
document.

Term Section Meaning

ALE
(Application
Level Events)
Interface

1 A set of interfaces through which ALE Clients may interact
with filtered, consolidated EPC data and related data from a
variety of sources. In all, there are five APIs and two callback
interfaces.

ALE Client 2 A system component, typically application business logic, that
interacts with EPC data and related data through an ALE
Interface.

ALE
Implementation

2 Software or hardware that receives requests from one or more
ALE Clients and carries out operations according to this
specification.

Access Control
API

4, 11 An API through which clients may define the access rights of
other clients to use the facilities provided by the other APIs.
One of five APIs comprising the ALE Interface.

Callback
Interface

4.2, 8.4,
9.8

An interface through which the Reading API and Writing API
deliver asynchronous results from standing requests.

CCReports 5.3, 9.4 A command cycle reports instance (CCReports) describes the
result of completing a single command cycle. It is provided as
an output by an implementation of the ALE Writing API.

CCSpec 5.3, 9.3 A command cycle specification (CCSpec) specifies the
operations to be performed by an ALE implementation during a
Command Cycle. An ALE Client provides a CCSpec to an
ALE Implementation to control the operation of the Writing
API.

Command
Cycle

5.3 The smallest unit of interaction between an ALE client and an
implementation of the ALE Writing API. A command cycle is
an interval of time during which Tags are written or otherwise
operated upon.

 Copyright © 2004–2009 EPCglobal®, All Rights Reserved.Page 218 of 229

Term Section Meaning

Datatype 5.4 Specifies what kind of data values a Tag field is considered to
contain, and how they are encoded into the Tag’s memory.

ECReports 5.2, 8.3 An event cycle reports instance (ECReports) describes the
result of completing a single event cycle. It is provided as an
output by an implementation of the ALE Reading API.

ECSpec 5.2, 8.2 An event cycle specification (ECSpec) specifies the operations
to be performed by an ALE implementation during an Event
Cycle, and how the results are to be reported. An ALE Client
provides an ECSpec to an ALE Implementation to control the
operation of the Reading API.

Event Cycle 5.2 The smallest unit of interaction between an ALE client and an
implementation of the ALE Reading API. An event cycle is an
interval of time during which Tags are read.

Fieldname 5.4 A name that specifies a particular data field of a Tag.

Fieldspec 5.4 A structure that is used to specify how a data field of a Tag is
accessed through the ALE Interface, consisting of a Fieldname,
Datatype, and Format.

Fixed Field 5.4 A Tag memory field that occupies a fixed location. By
definition, a fixed field always exists as long as the memory
bank exists and is of sufficient size.

Format 5.4 Specifies the syntax by which individual data values are
presented at the level of the ALE Interface.

Grouping
Operator

5.2.1,
6.2.1.4,
6.2.2.4

A function that maps a data value into a group code. Specifies
how data read within an Event Cycle are to be partitioned into
groups for reporting purposes.

Logical Reader
API

10 An API through which clients may define logical reader names
for use with the Reading API and the Writing API, each of
which maps to one or more sources/actuators provided by the
implementation.

Logical Reader
Name

10 An abstract name that an ALE Client uses to refer to one or
more Readers that have a single logical purpose; e.g.,
DockDoor42.

On-demand
(“Pull”)
Request

5.2, 5.3 A request for the execution of an event or command cycle
which is carried out on a one-time basis at the time of request.
On-demand requests are made using the immediate or poll
methods of the ALE Reading or Writing API. Results are
returned directly to the caller at the completion of the event or
command cycle.

 Copyright © 2004–2009 EPCglobal®, All Rights Reserved.Page 219 of 229

Term Section Meaning

Physical
Reader

10 A physical device, such as an RFID reader or bar code scanner,
that acts as one or more Readers for the purposes of the ALE
Implementation.

Reader 5.1 A channel through which Tags are accessed. Through a
Reader, data may be read from Tags, and in some cases
(depending on the capabilities of the Readers and Tags
involved) data may be written to Tags or other operations
performed on Tags.

Reader Cycle 5.1 The smallest unit of interaction of an ALE Implementation with
a Reader.

Reading API 5, 6, 8 An API through which clients may obtain filtered, consolidated
EPC and other data from a variety of sources. In particular,
clients may read RFID tags using RFID readers. One of five
APIs comprising the ALE Interface.

Report 5.1 Data about event cycle communicated from the ALE
Implementation to an ALE Client.

Standing
(“Push”)
Request

5.2, 5.3 A request for the execution of event or command cycles that
remains in effect until subsequently cancelled. During the time
the request remains in effect, multiple event or command
cycles may be completed. Each time an event or command
cycle completes, results are sent asynchronously to one or more
Subscribers via the ALECallback or ALECCCallback Interface.
Standing requests are entered using the subscribe method
of the ALE Reading or Writing API, and cancelled using the
unsubscribe method.

Subscriber 4.2, 8, 9 A receiver of asynchronous results generated from a Standing
Request.

Tag 5.1 A data carrier such as an RFID tag or some other data carrier
that can be treated in a similar manner such as a bar code, OCR
text, and so on.

Tag Memory
API

7 An API through which clients may define symbolic names that
refer to data fields of tags. One of five APIs comprising the
ALE Interface.

Variable Field 5.4 A Tag memory field that does not occupy a fixed location or
that may be absent. A variable field may or may not exist
depending on the contents of memory. Accessing a variable
field may require the presence of additional information to be
present in Tag memory locations other than field itself.

 Copyright © 2004–2009 EPCglobal®, All Rights Reserved.Page 220 of 229

Term Section Meaning

Writing API 5, 6, 9 An API through which clients may cause operations to be
performed on EPC data carriers through a variety of actuators.
In particular, clients may write RFID tags using RFID
“readers” (capable of writing tags) and printers. One of five
APIs comprising the ALE Interface.

Table 113. Glossary 4517

4519

4523
4524

4526

4528
4529

4531

4534
4535
4536

4538
4539
4540

4542

4544
4545

16 Appendix: Changes in ALE 1.1 (non-normative) 4518
This section summarizes the changes between ALE 1.0 and ALE 1.1.

16.1 Changes to the ALE Reading API 4520
• primaryKeyFields parameter added to ECSpec (Section 8.2). 4521

• More than one start trigger may be specified in an ECSpec. The startTrigger 4522
parameter of ECBoundarySpec is deprecated in favor of a new parameter
startTriggerList. (Section 8.2.1)

• Start conditions are no longer mutually exclusive: an ECSpec may specify both start 4525
triggers and repeat period. (Section 8.2.1)

• More than one stop trigger may be specified. The stopTrigger parameter of 4527
ECBoundarySpec is deprecated in favor of a new parameter
stopTriggerList. (Section 8.2.1)

• A new stop condition “when data available” is added, indicated by boolean 4530
whenDataAvailable in ECBoundarySpec. (Section 8.2.1)

• A new real-time clock standardized trigger is added. (Section 8.2.4.1) 4532

• A facility for reporting per-reader, per-tag, and per-tag-sighting “statistics” (that is, 4533
information beyond the data read from the tag) is added. See the new
statProfileNames parameter of ECReportSpec (Section 8.2.5) and Sections
8.2.13, 8.3.9, 8.3.10, 8.3.11, and 8.3.12.

• Filters have been extended to allow for filtering on any combination of Tag fields. 4537
The includePatterns and excludePatterns parameters of
ECFilterSpec are deprecated in favor of a new filterList parameter.
(Sections 8.2.7 and 8.2.8)

• Grouping has been extended to allow for grouping on any single Tag field. 4541
(Section 8.2.9)

• ECReportOutputSpec has been extended to allow reading of any combination of 4543
Tag fields. See the new fieldList parameter of ECReportOutputSpec
(Section 8.2.10) and Sections 8.3.6 and 8.3.7.

 Copyright © 2004–2009 EPCglobal®, All Rights Reserved.Page 221 of 229

• ECReports includes a new parameter initiationCondition to indicate 4546
which of several start conditions actually initiated an event cycle, and new fields
initiationTrigger and terminationTrigger to indicate which of several
triggers were used in the case of initiation or termination via trigger. (Sections

4547
4548
4549
4550

4552

4554

4561

4564

4566
4567
4568

4570

4572
4573

4575
4576

4578

4580

8.3
and 8.3.1)

• New values for ECTerminationCondition added: DATA_AVAILABLE and 4551
UNDEFINE. (Section 8.3.2)

16.2 New APIs 4553
The following APIs are completely new in ALE 1.1:

• The Tag Memory API (Section 7) 4555

• The Writing API (Section 9) 4556

• The Logical Reader API (Section 10) 4557

• The Access Control API (Section 11) 4558

16.3 New Bindings 4559
• A new HTTP over TLS (HTTPS) binding has been added for asynchronous 4560

notifications. See [ALE1.1Part2, Section 2.4].

16.4 Clarifications 4562
• The state transitions in the lifecycle of an ECSpec have been clarified. See 4563

Section 5.6.

• The list of error conditions in Section 8.1.1 has been expanded to show that 4565
getStandardVersion and getVendorVersion each may raise an
ImplementationException. In the ALE 1.0 specification, this was indicated in the
SOAP binding but not in the main body of the specification.

• The UML descriptions of several parameters in the Reading API have been changed 4569
to match the XML binding.

• The description of the asynchronous notification mechanism has been formalized by 4571
introducing a formal “callback” interface at the UML level. The implementation at
the binding level is exactly the same as in ALE 1.0.

• The treatment of names of ECSpecs and ECReports with respect to Unicode 4574
canonicalization rules has been clarified (in Section 4.5). It has also been clarified
that the empty string may not be used as an ECSpec or ECReport name.

• The equivalence of null, omitted, and empty string values has been clarified, as has 4577
the equivalence of omitted and empty lists. See Section 4.7.

• The relationship of the result returned from getECSpec and the value originally 4579
provided to define has been clarified.

 Copyright © 2004–2009 EPCglobal®, All Rights Reserved.Page 222 of 229

17 References 4581
[ALE1.0] EPCglobal, “The Application Level Events (ALE) Specification, Version 1.0,”
EPCglobal Ratified Standard, September 2005,

4582
4583

http://www.epcglobalinc.org/standards/ale/ale_1_0-standard-20050915.pdf. 4584

4585
4586

[ALE1.1Part2] EPCglobal, “The Application Level Events (ALE) Specification,
Version 1.1.1 Part II: XML and SOAP Bindings,” EPCglobal Ratified Standard, March
2009, http://www.epcglobalinc.org/standards/ale/ale_1_1_1-standard-4587
XMLandSOAPbindings-20090313.pdf. 4588

4589
4590

4591

[ASN.1] CCITT, “Specification of Basic Encoding Rules for Abstract Syntax Notation
One (ASN.1)", CCITT Recommendation X.209, January 1988.

[EPCAF] K. R. Traub et al, “EPCglobal Architecture Framework,” EPCglobal technical
document, July 2005, http://www.epcglobalinc.org/standards_technology/Final-4592
epcglobal-arch-20050701.pdf. 4593

4594
4595
4596

[Gen2] EPCglobal, “EPC™ Radio-Frequency Identity Protocols Class-1 Generation-2
UHF RFID Protocol for Communications at 860 MHz – 960 MHz Version 1.1.0,”
EPCglobal Ratified Standard, October 2007,
http://www.epcglobalinc.org/standards/uhfc1g2/uhfc1g2_1_1_0-standard-20071017.pdf. 4597

4598
4599
4600

4601
4602

4603

[ISO15962] ISO/IEC, “Information technology – Radio frequency identification (RFID)
for item management – Data protocol: data encoding rules and logical memory
functions,” ISO/IEC 15962:2004, October 2004.

[ISODir2] ISO, “Rules for the structure and drafting of International Standards
(ISO/IEC Directives, Part 2, 2001, 4th edition),” July 2002.

[RFC2396] T. Berners-Lee, R. Fielding, L. Masinter, “Uniform Resource Identifiers
(URI): Generic Syntax,” RFC2396, August 1998, http://www.ietf.org/rfc/rfc2396. 4604

4605 [RFC3061] M. Mealling, “A URN Namespace of Object Identifiers,” RFC3061,
February 2001, http://www.ietf.org/rfc/rfc3061. 4606

4607
4608

[TDS1.3.1] EPCglobal, “EPCglobal Tag Data Standards Version 1.3.1,” EPCglobal
Ratified Standard, September 2007,
http://www.epcglobalinc.org/standards/tds/tds_1_3_1-standard-20070928.pdf. 4609

4610
4611

4613
4614
4615

4616
4617
4618

[Unicode] The Unicode Consortium, The Unicode Standard, Version 5.0, Addison-
Wesley, November, 2006, ISBN 0321480910.

18 Acknowledgement of Contributors and of Companies 4612
Opt’d-in during the Creation of this Standard (non-
normative)

Disclaimer

Whilst every effort has been made to ensure that this document and the information
contained herein are correct, EPCglobal and any other party involved in the creation of
the document hereby state that the document is provided on an “as is” basis without

http://www.epcglobalinc.org/standards/ale/ale_1_0-standard-20050915.pdf
http://www.epcglobalinc.org/standards/ale/ale_1_1_1-standard-XMLandSOAPbindings-20090313.pdf
http://www.epcglobalinc.org/standards/ale/ale_1_1_1-standard-XMLandSOAPbindings-20090313.pdf
http://www.epcglobalinc.org/standards_technology/Final-epcglobal-arch-20050701.pdf
http://www.epcglobalinc.org/standards_technology/Final-epcglobal-arch-20050701.pdf
http://www.epcglobalinc.org/standards/uhfc1g2/uhfc1g2_1_1_0-standard-20071017.pdf
http://www.ietf.org/rfc/rfc2396
http://www.ietf.org/rfc/rfc3061
http://www.epcglobalinc.org/standards/tds/tds_1_3_1-standard-20070928.pdf

 Copyright © 2004–2009 EPCglobal®, All Rights Reserved.Page 223 of 229

warranty, either expressed or implied, including but not limited to any warranty that the
use of the information herein with not infringe any rights, of accuracy or fitness for
purpose, and hereby disclaim any liability, direct or indirect, for damages or loss
relating to the use of the document.

4619
4620
4621
4622

4623
4624
4625
4626
4627
4628

4629

4630

4631

4632

4633

4634

4635

4636

4637

4638

4639

4640

4641

4642

4643

4644

4645

4646

4647

4648

4649

4650

4651

4652

4653

Below is a list of active participants and contributors in the development of the ALE 1.1
specification. This list does not acknowledge those who only monitored the process
without contributing or those who chose not to have their name listed here. An “active
participant” for the purpose of this list is an individual who corresponded using the
Working Group mailing list or who attended one or more face-to-face or teleconference
meetings of the Working Group.

Mark Frey (EPCglobal Inc.), Facilitator

Richard Bach (GlobeRanger), Co-Chair, Conformance Requirements Editor

Daniel Paley (AWiD), Past Co-Chair

Bryan Tracey (GlobeRanger), Past Co-Chair

Ken Traub (Ken Traub Consulting LLC; BEA Systems), Co-Chair, Specification Editor

Soumya Roy Chowdhury (Polaris Networks), Test Plan Editor

Muhammad Alam (SAP Aktiengesellschaft)

Scott Barvick (Reva Systems)

Bud Biswas (Polaris Networks)

Daniel Bowman (Kimberly-Clark)

Rob Buck (Intermec)

Toby Cabot (Reva Systems)

Ching-Hsiang Chang (RFID Research Center, Chang Jung Christian University)

Rita Chatterjee (Cognizant Technology Solutions)

John Cooper (Kimberly-Clark)

Roberto DeVet (Target Corporation)

Paul Dietrich (Impinj)

Mustafa Dohadwala (Shipcom Wireless)

Reinhard Dunst (Elektrobit; 7iD Technologies)

Sastry Duri (IBM)

Suvojit Dutta (Cognizant Technology Solutions)

Nicholas Fergusson (EPCglobal Inc.)

Gerhard Gangl (Elektrobit; 7iD Technologies)

Greg Gilbert (Manhattan Associates)

Satyaki Gupta (Cognizant Technology Solutions)

 Copyright © 2004–2009 EPCglobal®, All Rights Reserved.Page 224 of 229

Stephan Haller (SAP Aktiengesellschaft) 4654

4655

4656

4657

4658

4659

4660

4661

4662

4663

4664

4665

4666

4667

4668

4669

4670

4671

4672

4673

4674

4675

4676

4677

4678

4679

4680

4681

4682

4683

4684

4685

Craig Harmon (Q.E.D. Systems)

Sudhir Hasbe (SamSys)

Lars-Erik Helander (Intermec)

Jeremy Helm (ACSIS)

Yoshimura Hisato (Nippon Telegraph & Telephone Corp)

Marc Horowitz (BEA Systems)

Qiming Huang (Oracle Corporation)

Noriaki Itoh (Dai Nippon Printing)

Michael Jonas (Metro)

Howard Kapustein (Manhattan Associates)

Andreas Kerschbaumer (Elektrobit; 7iD Technologies)

Satoshi Kinoshita (NEC Corporation)

Yuval Kost (Sandlinks)

P. Krishna (Reva Systems)

Joe Kubler (Intermec)

Rakesh Kumar (Cognizant Technology Solutions)

Mi Young Kwak (Allixon Co., Ltd)

Ram Laks (rfXcel)

Mike Lange (Red Prairie)

Da-Gang Lee (Institute for Information Industry)

Kyungeun Lim (Research Center for Logistics Infoformation Technology)

Timo Liu (Regal Scan Tech)

Steve Lockhart (Sirit Technologies)

Jerome Louvel (Supply Insight)

Malena Mesarina (Hewlett-Packard)

Gena Morgan (EPCglobal Inc.)

Stephen Morris (Printronix)

David Nesbitt (Vue Technology)

Ted Osinski (MET Laboratories)

Cindy Osman (Sun Microsystems)

Giselle Ow-Yang (EPCglobal Inc.)

 Copyright © 2004–2009 EPCglobal®, All Rights Reserved.Page 225 of 229

Sung Gong Park (MetaRights) 4686

4687

4688

4689

4690

4691

4692

4693

4694

4695

4696

4697

4698

4699

4700

4701

4702

4703

4704

4705

4706

4707

4708

4709

4710

4711

4712

4713

4714

4715
4716
4717

4718

Jong Park (Tibco Software)

Nicolas Pauvre (GS1 France)

Eliot Polk (Reva Systems)

Elliot Polk (Reva Systems)

Jim Reed (MET Laboratories)

Kelly Rhoades (EPCglobal Inc.)

Teresa Rinella (Accenture)

John Ross (IBM)

Subhabrata Roy (Cognizant Technology Solutions)

Curt Rozeboom (Q.E.D. Systems)

Jeff Sailors (Intermec)

Avinava Sarkar (Cognizant Technology Solutions)

Rick Schendel (Target Corporation)

Chris Shabsin (BEA Systems)

Dave Shaw (Reva Systems)

Dong Cheul Shin (MetaRights)

Adam Sills (GlobeRanger)

Inderjeet Singh (Cognizant Technology Solutions)

Sylvia Stein (GS1 Netherlands)

Hiroki Tagato (NEC Corporation)

Wolfgang Thaller (Elektrobit; 7iD Technologies)

Phyllis Turner-Brim (Intermec)

Richard Ulrich (Wal-Mart Stores)

Nitin Vidwans (Wal-Mart Stores)

Margaret Wasserman (ThingMagic)

Steve Winkler (SAP Aktiengesellschaft)

Katsuyuki Yamashita (Nippon Telegraph & Telephone Corp)

James Zhang (TrueDemand Software)

The following list enumerates, in alphabetical order by company name, all companies
that signed the EPCglobal IP Policy and the opt-in agreement for the EPCglobal Working
Group that created the ALE 1.1 standard.

7iD Technologies (formerly EOSS GmbH)

 Copyright © 2004–2009 EPCglobal®, All Rights Reserved.Page 226 of 229

Accenture 4719

4720

4721

4722

4723

4724

4725

4726

4727

4728

4729

4730

4731

4732

4733

4734

4735

4736

4737

4738

4739

4740

4741

4742

4743

4744

4745

4746

4747

4748

4749

4750

Acer Cybercenter Service Inc.

ACSIS

Afilias Limited

Allixon Co., Ltd

Altria Group, Inc./Kraft Foods

Alvin Systems

AMCO TEC International Inc.

AMOS Technologies Inc.

Applied Wireless (AWiD)

Auto-ID Labs - Cambridge

Auto-ID Labs - ICU

Auto-ID Labs - Japan

Auto-ID Labs - MIT

BEA Systems

Cheng-Loong Corporation

Cisco

City Univ of Hong Kong

Cognizant Technology Solutions

Convergence Sys Ltd

Dai Nippon Printing (DNP)

Denso Wave Inc

Elektrobit (formerly 7iD)

ECO, Inc.

EPCglobal Inc.

ETRI - Electronics and Telecommunication Research Institute

FEIG Electronics

France Telecom

Fujitsu Ltd

GlobeRanger

GS1 Australia EAN

GS1 Germany (CCG)

 Copyright © 2004–2009 EPCglobal®, All Rights Reserved.Page 227 of 229

GS1 Hong Kong 4751

4752

4753

4754

4755

4756

4757

4758

4759

4760

4761

4762

4763

4764

4765

4766

4767

4768

4769

4770

4771

4772

4773

4774

4775

4776

4777

4778

4779

4780

4781

4782

GS1 International

GS1 Japan

GS1 Netherlands (EAN.nl)

GS1 South Korea

GS1 Sweden AB (EAN)

GS1 Taiwan (EAN)

GS1 UK

GS1 US

Hewlett-Packard Co. (HP)

IBM

Impinj

Institute for Information Industry

Intermec

Ken Traub Consulting LLC

Kimberly-Clark

KL-NET

KTNET - Korea Trade Network

Leiner Health Products Inc.

LG CNS

Research Center for Logistics Information Technology (LIT)

Lockheed Martin - Savi Technology Divison

Manhattan Associates

MET Laboratories

MetaBiz

MetaRights, Ltd.

Metro

Microelectronics Technology, Inc.

Mstar Semiconductor

NEC Corporation

Nippon Telegraph & Telephone Corp (NTT)

noFilis Ltd.

 Copyright © 2004–2009 EPCglobal®, All Rights Reserved.Page 228 of 229

Nomura Research Institute 4783

4784

4785

4786

4787

4788

4789

4790

4791

4792

4793

4794

4795

4796

4797

4798

4799

4800

4801

4802

4803

4804

4805

4806

4807

4808

4809

4810

4811

4812

4813

4814

NXP Semiconductors

NYSSA S.R.L.

OatSystems

Oracle Corporation

Panda Logistics Co.Ltd

Pango Networks, Inc.

Polaris Networks

Polaris Networks

Printronix

Psion Teklogix Inc.

Q.E.D. Systems

Rafcore Systems Inc.

Red Prairie

Regal Scan Tech

RetailTech

Reva Systems

RF-IT Solutions GmbH

RFID Research Center, Chang Jung Christian University

rfXcel Corp

Samsung SDS

Sandlinks

SAP Aktiengesellschaft

Secure RF

Sedna Systems, Ltd.

Shipcom Wireless, Inc.

Sirit Technologies Inc

Sirit Technologies Inc

Supply Insight, Inc.

SupplyScape Corporation

Tagent Corporation

The Boeing Company

 Copyright © 2004–2009 EPCglobal®, All Rights Reserved.Page 229 of 229

4815

4816

4817

4818

4819

4820

4821

4822

4823

4824

4825

4826

4827

ThingMagic, LLC

Tibco Software, Inc

Toppan Printing Co., Ltd

Toray International, Inc.

Tracetracker Inovation AS

TrueDemand Software

Userstar Information System Co. Ltd

Ussen Limited Company

VeriSign

Vue Technology

Wal-Mart Stores, Inc.

Waldemar Winckel GmbH & Co. KG

Warelite Ltd

	1 Introduction
	2 Role Within the EPCglobal Network Architecture
	3 Terminology and Typographical Conventions
	4 ALE Interfaces
	4.1 UML Notation for APIs
	4.2 API Interaction
	4.3 Version Introspection Methods
	4.4 Classes Common to the Reading and Writing APIs
	4.5 Interpretation of Names
	4.6 Scoping of Names
	4.7 Equivalance of Null, Omitted, and Empty String Values, and of Omitted and Empty Lists

	5 ALE Concepts and Principles of Operation
	5.1 Fundamental ALE Concepts
	5.2 Event Cycles
	5.2.1 Group Reports

	5.3 Command Cycles
	5.4 Tag Data Model
	5.4.1 Default Datatype and Format
	5.4.2 “Field Not Found” Condition
	5.4.3 “Operation Not Possible” Condition
	5.4.4 “Out of Range” Condition
	5.4.5 Pattern Fieldnames

	5.5 Reader Cycle Timing
	5.6 Execution of Event Cycles and Command Cycles
	5.6.1 Lifecycle State Transitions for EC/CCSpecs Created by the Define Method
	5.6.2 Lifecycle State Transitions for EC/CCSpecs Created by the Immediate Method

	6 Built-in Fieldnames, Datatypes, and Formats
	6.1 Built-in Fieldnames
	6.1.1 The epc fieldname
	6.1.2 The killPwd fieldname
	6.1.3 The accessPwd fieldname
	6.1.4 The epcBank fieldname
	6.1.5 The tidBank fieldname
	6.1.6 The userBank fieldname
	6.1.7 The afi fieldname
	6.1.8 The nsi fieldname
	6.1.9 Generic Fieldnames
	6.1.9.1 Absolute Address Fieldnames
	6.1.9.2 Variable Fieldnames
	6.1.9.3 Variable Pattern Fieldnames

	6.2 Built-in Datatypes and Formats
	6.2.1 The epc datatype
	6.2.1.1 Binary Encoding and Decoding of the EPC Datatype
	6.2.1.2 EPC datatype Formats
	6.2.1.3 EPC datatype Pattern Syntax
	6.2.1.4 EPC datatype Grouping Pattern Syntax

	6.2.2 Unsigned Integer (uint) Datatype
	6.2.2.1 Binary Encoding and Decoding of the Unsigned Integer Datatype
	6.2.2.2 Unsigned Integer Datatype Formats
	6.2.2.3 Unsigned Integer Pattern Syntax
	6.2.2.4 Unsigned Integer Grouping Pattern Syntax

	6.2.3 The bits Datatype
	6.2.3.1 Binary Encoding and Decoding of the Bits Datatype
	6.2.3.2 Bits Datatype Formats
	6.2.3.3 Bits Pattern Syntax
	6.2.3.4 Bits Grouping Pattern Syntax

	6.2.4 ISO 15962 String Datatype
	6.2.4.1 ISO 15962 String Format
	6.2.4.2 ISO 15962 String Pattern Syntax
	6.2.4.3 ISO 15962 String Grouping Pattern Syntax

	7 Tag Memory Specification API
	7.1 ALETM – Main API class
	7.1.1 Error Conditions

	7.2 TMSpec (abstract)
	7.3 TMFixedFieldListSpec
	7.4 TMFixedFieldSpec
	7.5 TMVariableFieldListSpec
	7.6 TMVariableFieldSpec

	8 ALE Reading API
	8.1 ALE – Main API Class
	8.1.1 Error Conditions

	8.2 ECSpec
	8.2.1 ECBoundarySpec
	8.2.2 ECTime
	8.2.3 ECTimeUnit
	8.2.4 ECTrigger
	8.2.4.1 Real-time Clock Standardized Trigger

	8.2.5 ECReportSpec
	8.2.6 ECReportSetSpec
	8.2.7 ECFilterSpec
	8.2.8 ECFilterListMember
	8.2.9 ECGroupSpec
	8.2.10 ECReportOutputSpec
	8.2.11 ECReportOutputFieldSpec
	8.2.12 ECFieldSpec
	8.2.13 ECStatProfileName
	8.2.14 Validation of ECSpecs

	8.3 ECReports
	8.3.1 ECInitiationCondition
	8.3.2 ECTerminationCondition
	8.3.3 ECReport
	8.3.4 ECReportGroup
	8.3.5 ECReportGroupList
	8.3.6 ECReportGroupListMember
	8.3.7 ECReportMemberField
	8.3.8 ECReportGroupCount
	8.3.9 ECTagStat
	8.3.10 ECReaderStat
	8.3.11 ECSightingStat
	8.3.12 ECTagTimestampStat

	8.4 ALECallback Interface

	9 ALE Writing API
	9.1 ALECC Class
	9.1.1 Error Conditions

	9.2 CCParameterList
	9.2.1 CCParameterListEntry

	9.3 CCSpec
	9.3.1 CCBoundarySpec
	9.3.2 CCCmdSpec
	9.3.3 CCFilterSpec
	9.3.4 CCOpSpec
	9.3.5 CCOpType
	9.3.5.1 Values for the CHECK Operation
	9.3.5.1.1 EPC/UII Memory Bank CHECK Operation
	9.3.5.1.2 User Memory Bank CHECK Operation

	9.3.5.2 Values for the INITIALIZE Operation
	9.3.5.2.1 EPC/UII Memory Bank INITIALIZE Operation
	9.3.5.2.2 User Memory Bank INITIALIZE Operation

	9.3.6 CCOpDataSpec
	9.3.7 CCOpDataSpecType
	9.3.8 CCLockOperation
	9.3.9 CCStatProfileName
	9.3.10 Validation of CCSpecs

	9.4 CCReports
	9.4.1 CCInitiationCondition
	9.4.2 CCTerminationCondition
	9.4.3 CCCmdReport
	9.4.4 CCTagReport
	9.4.5 CCOpReport
	9.4.6 CCStatus
	9.4.7 CCTagStat

	9.5 EPCCache
	9.5.1 Exceptions
	9.5.2 EPCCacheSpec
	9.5.3 EPCPatternList

	9.6 AssociationTable
	9.6.1 Exceptions
	9.6.2 AssocTableSpec
	9.6.3 AssocTableEntryList
	9.6.4 AssocTableEntry

	9.7 Random Number Generator
	9.7.1 Exceptions
	9.7.2 RNGSpec

	9.8 ALECCCallback Interface

	10 ALE Logical Reader API
	10.1 Background (non-normative)
	10.2 ALE Logical Reader API
	10.3 API
	10.3.1 Error Conditions
	10.3.2 Conformance Requirements

	10.4 LRSpec
	10.5 LRProperty
	10.6 Tag Smoothing

	11 Access Control API
	11.1 API
	11.2 Error Conditions
	11.3 ACClientIdentity
	11.4 ACClientCredential
	11.5 ACRole
	11.6 ACPermission
	11.7 Access Permission Classes (ACClass)
	11.7.1 Instance Names for the Method Class

	11.8 Partial Implementations
	11.9 Anonymous User
	11.10 Initial State

	12 Use Cases (non-normative)
	12.1 Reading API Use Cases
	12.2 Writing API Use Cases

	13 ALE Scenarios (non-normative)
	13.1 ALE Context
	13.2 Interaction Scenarios
	13.2.1 Subscribing for Asynchronous Notifications
	13.2.1.1 Assumptions
	13.2.1.2 Description

	13.2.2 Polling for Synchronous Results
	13.2.2.1 Assumptions
	13.2.2.2 Description

	13.2.3 Defining a Single-Use Spec and Receiving a Synchronous Report
	13.2.3.1 Assumptions
	13.2.3.2 Description

	14 Appendix: EPC Patterns (non-normative)
	15 Glossary (non-normative)
	16 Appendix: Changes in ALE 1.1 (non-normative)
	16.1 Changes to the ALE Reading API
	16.2 New APIs
	16.3 New Bindings
	16.4 Clarifications

	17 References
	18 Acknowledgement of Contributors and of Companies Opt’d-in during the Creation of this Standard (non-normative)

